Microbial consortia execute collaborative molecular processes with contributions from individual species, on such basis enabling optimized molecular function. Such collaboration and synergies benefit metabolic flux specifically in extreme environmental conditions as seen in acid mine drainage, with biofilms as relevant microenvironment. However, knowledge about community species composition is not sufficient for deducing presence and efficiency of composite molecular function. For this task molecular resolution of the consortium interactome is to be retrieved, with molecular biomarkers particularly suited for characterizing composite molecular processes involved in biofilm formation and maintenance. A microbial species set identified in 18 copper environmental sites provides a data matrix for deriving a cross-species molecular process model of biofilm formation composed of 191 protein coding genes contributed from 25 microbial species. Computing degree and stress centrality of biofilm molecular process nodes allows selection of network hubs and central connectors, with the top ranking molecular features proposed as biomarker candidates for characterizing biofilm homeostasis. Functional classes represented in the biomarker panel include quorum sensing, chemotaxis, motility and extracellular polysaccharide biosynthesis, complemented by chaperones. Abundance of biomarker candidates identified in experimental data sets monitoring different biofilm conditions provides evidence for the selected biomarkers as sensitive and specific molecular process proxies for capturing biofilm microenvironments. Topological criteria of process networks covering an aggregate function of interest support the selection of biomarker candidates independent of specific community species composition. Such panels promise efficient screening of environmental samples for presence of microbial community composite molecular function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085001 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202032 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!