Purpose: Angiotensin II type 1 receptor blockers (ARBs) have been investigated for their neuroprotective and intraocular pressure (IOP) lowering effects in treating glaucoma, but the reports have been inconsistent possibly because different compounds and models have been used. Here we selected three ARBs for head-to-head comparisons of their effects on IOP and transforming growth factor β (TGFβ) signaling, which is believed to play an important role in glaucoma pathogenesis.

Methods: Three ARBs (losartan, irbesartan or telmisartan) or vehicle controls were administered via chow to C57BL/6J mice for up to 7 days. Drug concentrations in the eye, brain, and plasma were evaluated by liquid chromatography mass spectrometry. Cohorts of mice were randomly assigned to different treatments. IOP and blood pressure were measured before and after ARB treatment. Effects of ARBs on TGFβ signaling in the retina were evaluated by phosphorylated Smad2 (pSmad2) immunohistochemistry.

Results: Physiologically relevant concentrations of losartan, irbesartan and telmisartan were detected in eye, brain and plasma after drug administration (n = 11 mice/treatment). Blood pressure was significantly reduced by all ARBs compared to vehicle-fed controls (all p-values < 0.001, n = 8-15 mice/treatment). Compared to vehicle control, IOP was significantly reduced by irbesartan (p = 0.030) and telmisartan (p = 0.019), but not by losartan (n = 14-17 mice/treatment). Constitutive pSmad2 fluorescence observed in retinal ganglion cells was significantly reduced by telmisartan (p = 0.034), but not by losartan or irbesartan (n = 3-4 mice/treatment).

Conclusions: Administration via chow is an effective delivery method for ARBs, as evidenced by lowered blood pressure. ARBs vary in their abilities to lower IOP or reduce TGFβ signaling. Considering the significant roles of IOP and TGFβ in glaucoma pathogenesis, specific ARBs with dual effects, such as telmisartan, may be more effective than other ARBs for treating glaucoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084929PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201719PLOS

Publication Analysis

Top Keywords

tgfβ signaling
16
losartan irbesartan
12
blood pressure
12
arbs
9
angiotensin type
8
type receptor
8
receptor blockers
8
intraocular pressure
8
treating glaucoma
8
three arbs
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!