Southeast Asia, especially India, is well known for the highest use of smokeless tobacco. These products are known to induce oral squamous cell carcinoma. However, not all long-term tobacco-chewers develop oral squamous cell carcinoma. In addition, germline variants play a crucial role in susceptibility, prognosis, development, and progression of the disease. These prompted us to study the genetic susceptibility to oral squamous cell carcinoma among the long-term tobacco-chewers. Here, we presented a retrospective study on prolonged tobacco-chewers of Northeast India to identify the potential protective or risk-associated germline variants in tobacco-related oral squamous cell carcinoma along with HPV infection. Targeted re-sequencing (n = 60) of 170 genetic regions from 75 genes was carried out in Ion-PGM™ and validation (n = 116) of the observed variants was done using Sequenom iPLEX MassARRAY™ platform followed by polymerase chain reaction-based HPV genotyping and p16-immunohistochemistry study. Subsequently, estimation of population structure, different statistical and in silico approaches were undertaken. We identified one nonsense-mediated mRNA decay transcript variant in the DFNA5 region (rs2237306), associated with Benzo(a)pyrene, as a protective factor (odds ratio = 0.33; p = 0.009) and four harmful (odds ratio > 2.5; p < 0.05) intronic variants, rs182361, rs290974, and rs169724 in SYK and rs1670661 in NELL1 region, involved in genetic susceptibility to tobacco- and HPV-mediated oral oncogenesis. Among the oral squamous cell carcinoma patients, 12.6% (11/87) were HPV positive, out of which 45.5% (5/11) were HPV16-infected, 27.3% (3/11) were HPV18-infected, and 27.3% (3/11) had an infection of both subtypes. Multifactor dimensionality reduction analysis showed that the interactions among HPV and NELL1 variant rs1670661 with age and gender augmented the risk of both non-tobacco- and tobacco-related oral squamous cell carcinoma, respectively. These suggest that HPV infection may be one of the important risk factors for oral squamous cell carcinoma in this population. Finally, we newly report a DFNA5 variant probably conferring protection via nonsense-mediated mRNA decay pathway against tobacco-related oral squamous cell carcinoma. Thus, the analytical approach used here can be useful in predicting the population-specific significant variants associated with oral squamous cell carcinoma in any heterogeneous population.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428318793023DOI Listing

Publication Analysis

Top Keywords

oral squamous
16
squamous cell
16
cell carcinoma
16
hpv infection
8
prolonged tobacco-chewers
8
carcinoma long-term
8
long-term tobacco-chewers
8
germline variants
8
oral
5
association dfna5
4

Similar Publications

Oral squamous cell carcinoma (OSCC) accounts for approximately 90% of all oral cancers, significantly impacting the survival and quality of life of patients. Exosomes, small extracellular vesicles released by cells, play a crucial role in intercellular communication in cancer. Nevertheless, their function and mechanism in OSCC remain elusive.

View Article and Find Full Text PDF

Salivary biomarkers for early detection of oral squamous cell carcinoma (OSCC) and head/neck squamous cell carcinoma (HNSCC).

Jpn Dent Sci Rev

December 2025

Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan.

View Article and Find Full Text PDF

Squamous cell carcinomas in several anatomical sites are caused by human papillomaviruses (HPV), and oncogenic double-stranded DNA viruses. There are about 200 genotypes; HPV16 is the most often occurring variant. Potential ways of infection are skin warts, sexual activity, exposure, immunization, or oral sex.

View Article and Find Full Text PDF

Cancer-associated fibroblasts promote oral squamous cell carcinoma progression by targeting ATP7A via exosome-mediated paracrine miR-148b-3p.

Cell Signal

January 2025

Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Cuproptosis is a newly discovered form of non-apoptotic cell death. Cancer-associated fibroblasts (CAFs) can secrete various bioactive substances, including exosomes, to promote tumor progression. However, the impact of CAFs on the regulation of copper metabolism and cuproptosis in oral squamous cell carcinomas (OSCC) has not been investigated.

View Article and Find Full Text PDF

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!