Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate ( H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201801900 | DOI Listing |
Small
October 2018
Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France.
Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2014
MiQro Innovation Collaborative Centre (C2MI), 45, Boulevard de l'Aéroport, Bromont, Québec J2L 1S8, Canada.
Although the conventional methods for strong attachment of chitosan onto stainless steel require many steps in different solvents, it has been demonstrated in this work that covalent grafting of chitosan on a steel surface can be easily achieved through the formation of a self-adhesive surface based on aryldiazonium seed layers. Initially, a polyaminophenyl layer is grafted on a stainless steel surface by means of the one-step GraftFast(TM) process (diazonium induced anchoring process). The grafted aminophenyl groups are then converted to an aryldiazonium seed layer by simply dipping the substrate in a sodium nitrite acidic solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!