Ternary organic solar cells are promising alternatives to the binary counterpart due to their potential in achieving high performance. Although a growing number of ternary organic solar cells are recently reported, less effort is devoted to morphology control. Here, ternary organic solar cells are fabricated using a wide-bandgap polymer PBT1-C as the donor, a crystalline fused-ring electron acceptor ITIC-2Cl, and an amorphous fullerene derivative indene-C bisadduct (ICBA) as the acceptor. It is found that ICBA can disturb π-π interactions of the crystalline ITIC-2Cl molecules in ternary blends and then help to form more uniform morphology. As a result, incorporation of 20% ICBA in the PBT1-C:ITIC-2Cl blend enables efficient charge dissociation, negligible bimolecular recombination, and balanced charge carrier mobilities. An impressive power conversion efficiency (PCE) of 13.4%, with a high fill factor (FF) of 76.8%, is eventually achieved, which represents one of the highest PCEs reported so far for organic solar cells. The results manifest that the adoption of amorphous fullerene acceptor is an effective approach to optimizing the ternary blend morphology and thereby increases the solar cell performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201803045 | DOI Listing |
Membranes (Basel)
December 2024
Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.
Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!