The creation of multiple emission pathways in quantum dots (QDs) is an exciting prospect with fundamental interest and optoelectronic potential. For the first time, we report multiple emission pathways in semiconductor nanocrystals (NCs) where the number of emission pathways desired is controlled by the number of dopant atoms per quantum dot. The origin of additional emission pathways is explained by interactions between dopant states and NC energy levels. Density functional theory (DFT) calculations of undoped 2.3 nm silicon (Si NCs) and the same NCs doped with 2 interstitial Cu atoms show good agreement to experiment. Such calculations provide valuable data to explain the changes in optical transitions due to the Cu dopant in terms of transition energies, quantum yield and dopant position as a function of dopants per NC. Changes in the optical properties of Si NCs induced by dopant concentration include extended excitation range and enhanced absorption coefficients, emission redshifts of up to 60 nm, and a two-fold increase in quantum yields up to 22%. The optical properties of doped NCs lead to significant bioimaging improvements illustrated by in vitro cell imaging, including redshifted excitation wavelengths away from natural autofluorescence and enhanced fluorescent signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr05071f | DOI Listing |
Front Med (Lausanne)
January 2025
Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States.
Photochem Photobiol
January 2025
Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama.
Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
This study aimed to elucidate the pathways through which covalent and non-covalent interactions between deamidated gliadin (DG) and tannic acid (TA) on influence the stability of Pickering emulsions. The interactions induced protein unfolding, as evidenced by increased ultraviolet absorption and a red shift in fluorescence emission. DG-TA composite nanoparticles effectively stabilized high internal phase emulsions, whereas DG nanoparticles alone did not.
View Article and Find Full Text PDFChem Asian J
January 2025
JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Jakkur, 560064, Bangalore, INDIA.
This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Organic Synthesis and Photoreactivity (ISOF) - National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
A supramolecular system, consisting of a tetrapyrenylporphyrinic core surrounded by arene-ruthenium prisms, has been assembled and characterized by means of electrochemical and photophysical techniques. The photophysical study shows that quantitative energy transfer from the peripheral pyrenyl units towards the central porphyrin core is operative in the tetrapyrenylporphyrinic system. Interestingly, encapsulation of the pyrenyl units into the ruthenium cages affects the photophysics of the central porphyrin component, since its emission quantum yield is reduced in the supramolecular array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!