Gait Analyses in Mice: Effects of Age and Glutathione Deficiency.

Aging Dis

Department of Pharmacology & Neuroscience, Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107 USA.

Published: August 2018

Minor changes (~0.1 m/s) in human gait speed are predictive of various measures of decline and can be used to identify at-risk individuals prior to further decline. These associations are possible due to an abundance of human clinical research. However, age-related gait changes are not well defined in rodents, even though rodents are used as the primary pre-clinical model for many disease states as well as aging research. Our study investigated the usefulness of a novel automated system, the CatWalk™ XT, to measure age-related differences in gait. Furthermore, age-related functional declines have been associated with decreases in the reduced to oxidized glutathione ratio leading to a pro-oxidizing cellular shift. Therefore the secondary aim of this study was to determine whether chronic glutathione deficiency led to exacerbated age-associated impairments. Groups of male and female wild-type (gclm) and knock-out (gclm) mice aged 4, 10 and 17 months were tested on the CatWalk and gait measurements recorded. Similar age-related declines in all measures of gait were observed in both males and females, and chronic glutathione depletion was associated with some delays in age-related declines, which were further exacerbated. In conclusion, the CatWalk is a useful tool to assess gait changes with age, and further studies will be required to identify the potential compensating mechanisms underlying the effects observed with the chronic glutathione depletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065294PMC
http://dx.doi.org/10.14336/AD.2017.0925DOI Listing

Publication Analysis

Top Keywords

chronic glutathione
12
glutathione deficiency
8
gait changes
8
age-related declines
8
glutathione depletion
8
gait
7
glutathione
5
age-related
5
gait analyses
4
analyses mice
4

Similar Publications

The role of ferroptosis and oxidative stress in cognitive deficits among chronic schizophrenia patients: a multicenter investigation.

Schizophrenia (Heidelb)

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.

Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.

View Article and Find Full Text PDF

Purpose: Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults.

Methods: A total of 1001 older adults aged 60 and above were recruited.

View Article and Find Full Text PDF

Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties.

View Article and Find Full Text PDF

Study of the Effect of Methyl Eugenol on Gastric Damage Produced by Spinal Cord Injury Model in the Rat.

Molecules

December 2024

Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico.

Traumatic spinal cord injury (SCI) is a serious medical condition that places patients at high risk of developing gastric ulceration and gastrointestinal bleeding. One preventative strategy involves the use of omeprazole; however, its chronic use is associated with adverse effects, highlighting the need for alternative therapies. This study evaluated the protective effects of methyl eugenol (ME) on gastric mucosal damage in a rat model of SCI.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!