The growth/motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, constitute a signalling system essential for embryogenesis and for tissue/organ regeneration in post-natal life. HGF/SF-MET signalling, however, also plays a key role in the onset of metastasis of a large number of human tumours. Both HGF/SF and MET are high molecular weight proteins that bury an extensive interface upon complex formation and thus constitute a challenging target for the development of low molecular weight inhibitors. Here we have used surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and X-ray crystallography to screen a diverse fragment library of 1338 members as well as a range of piperazine-like compounds. Several small molecules were found to bind in the of the kringle 1 domain of HGF/SF and its truncated splice variant NK1. We have defined the binding mode of these compounds, explored their biological activity and we show that selected fragments inhibit MET downstream signalling. Thus we demonstrate that targeting the of NK1 is an effective strategy to generate MET receptor antagonists and we offer proof of concept that the HGF/SF-MET interface may be successfully targeted with small molecules. These studies have broad implications for the development of HGF/SF-MET therapeutics and cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054100PMC
http://dx.doi.org/10.1039/c5sc02155cDOI Listing

Publication Analysis

Top Keywords

kringle domain
8
hepatocyte growth
8
growth factor/scatter
8
factor/scatter factor
8
factor hgf/sf
8
molecular weight
8
small molecules
8
exploring chemical
4
chemical space
4
space lysine-binding
4

Similar Publications

Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus.

View Article and Find Full Text PDF

The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads.

View Article and Find Full Text PDF

Background: Recombinant plasminogen activator (r-PA) consists of the Kringle-2 and protease domains of human tissue-type plasminogen. It is used clinically to treat coronary artery thrombosis and acute myocardial infarction. However, the expression and production of reteplase (r-PA) are limited due to its susceptibility to proteolysis during manufacturing processes.

View Article and Find Full Text PDF

Background: Factor XII (FXII or F12) deficiency is a rare inherited disorder, typically lacking haemorrhagic symptoms. There is limited literature exists on FXII deficiency and mutations within the Chinese population. This study aimed to characterize the spectrum of F12 gene mutations in a Chinese cohort and to investigate the relationship between FXII mutations and clinical phenotypes.

View Article and Find Full Text PDF

Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!