1. Monitoring the response of wild mammal populations to threatening processes is fundamental to effective conservation management. This is especially true for infectious diseases, which may have dynamic and therefore unpredictable interactions with their host. 2. We investigate the long-term impact of a transmissible cancer, devil facial tumour disease (DFTD), on the endemic Tasmanian devil. We analyse trends in devil spot-light counts and density across the area impacted by the disease. We investigate the demographic parameters which might be driving these trends, and use spatial capture-recapture models to examine whether DFTD has affected home range size. 3. We found that devils have declined by an average of 77% in areas affected by DFTD, and that there is a congruent trend of ongoing small decline in spotlight counts and density estimates. Despite this, devils have persisted to date within each of nine monitoring sites. One site is showing as yet unexplained small increases in density 8-10 years after the emergence of DFTD. 4. We also found the prevalence of DFTD has not abated despite large declines in density and that diseased sites continue to be dominated by young devils. The long-term impact of the disease has been partially offset by increased fecundity in the form of precocial breeding in 1-year-old females, and more pouch young per female in diseased sites. The lower densities resulting from DFTD did not affect home range size. 5. Transmission of devil facial tumour disease continues despite large declines in devil density over multiple generations. Plasticity in life history traits has ameliorated the impact of devil facial tumour disease, however broad-scale trends in density show ongoing decline. In light of this, devil facial tumour disease and the impact of stochastic events on the reduced densities wrought by the disease, continue to threaten devils. In the absence of methods to manage disease in wild populations, we advocate managing the low population densities resulting from disease rather than disease per se.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078421PMC
http://dx.doi.org/10.1111/1365-2664.13088DOI Listing

Publication Analysis

Top Keywords

devil facial
16
facial tumour
16
tumour disease
16
long-term impact
12
disease
10
impact transmissible
8
transmissible cancer
8
counts density
8
range size
8
despite large
8

Similar Publications

Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer.

View Article and Find Full Text PDF

Emerging infectious diseases (EIDs) not only cause catastrophic declines in wildlife populations but also generate selective pressures that may result in rapid evolutionary responses. One such EID is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal and has reduced the average lifespan of individuals by around 2 years, likely causing strong selection for traits that reduce susceptibility to the disease, but population decline has also left Tasmanian devils vulnerable to inbreeding depression.

View Article and Find Full Text PDF

Generation of Devil Facial Tumour Cells Co-Expressing MHC With CD80, CD86 or 41BBL to Enhance Tumour Immunogenicity.

Parasite Immunol

September 2024

Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.

The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL.

View Article and Find Full Text PDF

Sarcoptic Mange in a Tasmanian Devil (Sarcophilus harrisii) and Bennett's Wallaby (Notamacropus rufogriseus).

J Wildl Dis

October 2024

Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.

Sarcoptes scabiei mites and skin lesions consistent with severe sarcoptic mange were identified in a Tasmanian devil (Sarcophilus harrisii) and Bennett's wallaby (Notamacropus rufogriseus) from Tasmania, Australia. The devil and wallaby both had severe hyperkeratotic skin lesions. All stages of mite development were identified in the devil, suggesting parasite reproduction on the host.

View Article and Find Full Text PDF

Within the context of neoliberal healthcare, nurses and other health professionals face working conditions that leave them perpetually feeling inadequate, as though they are not enough. They are consistently expected to achieve more with less resources. In such an environment, mere professionalism proves wholly insufficient, enforcing norms of altruism and kindness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!