Brusatol, a quassinoid isolated from the traditional Chinese medicine Brucea javanica, has been reported to be an inhibitor of Nrf2 pathway and has great potential to be developed into a novel chemotherapeutic adjuvant. However, the in vivo process of brusatol has not been comprehensively explained yet. Therefore, this paper focused on the pharmacokinetic metabolism and excretion of brusatol in rats using a simple and reproducible LC-MS/MS method. The results indicated that the plasma concentration of brusatol decreased rapidly; the average cumulative excretion rate in urine was 5.82% during 24 h, and 0.71% in bile during 12 h. High-resolution mass spectrometry was applied for the identification of metabolites; as a result, four metabolites were detected and the structure was tentatively deduced on the base of the MS data, Compound Discoverer 2.0 and Mass Frontier 7.0 software. Hydroxylation, hydrolysis and glucuronidation were suggested as major metabolic pathways in vivo. The in vivo process and detection of metabolites of brusatol might improve the understanding of the mechanism of its anticancer effect and provide valuable information for its safety estimation, which will be essential to the new drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.4358 | DOI Listing |
Chin Med
January 2025
Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.
View Article and Find Full Text PDFBraz J Med Biol Res
November 2024
Brain Disease Department, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China.
Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a key transcription factor in the antioxidant response and is associated with various chronic diseases. The aim of this study was to explore the action of esculetin, a natural dihydroxy coumarin, on attenuating middle cerebral artery occlusion (MCAO) and reperfusion, and whether its effect is dependent on Nrf2 activation, as well as nuclear factor-kappa B (NF-κB) inhibition. Two doses of esculetin (20 and 40 mg/kg) were tested on rats with MCAO reperfusion.
View Article and Find Full Text PDFRedox Biol
November 2024
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China. Electronic address:
Antioxidants (Basel)
September 2024
Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia.
Immun Inflamm Dis
June 2024
Department of Bone Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
Introduction: We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation.
Methods: An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1β. Both models were then treated with PRP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!