The permanganate ion (MnO) has been widely used as a reagent for water treatment for over a century. It is a strong enough oxidant to activate carbon-hydrogen bonds, one of the most important reactions in biological and chemical systems. Our current textbook understanding of the oxidation mechanism in aqueous solution involves an initial, rate-limiting hydride abstraction by permanganate followed by reaction of the carbocation with bulk water to form an alcohol. This mechanism fits well into the classic oxidation sequence of alkane → alcohol → aldehyde → carboxylate, the central paradigm for both abiotic and biotic alkane oxidation in aqueous environments. In this study, we provide three lines of evidence through (1) a broken-symmetry density functional theory approach, (2) isotope labeling experiments, and (3) kinetic network modeling to demonstrate that aqueous permanganate can circumvent prior alcohol formation and produce aldehydes directly via a reaction path that bifurcates after the initial transition state. In contrast to classic transition state theory, the rate-limiting step is found to not determine product distribution, bearing critical implications for pathway and rate predictions. This complex reaction network provides new insights into the oxidation mechanisms of organic compounds involving transition metal complexes as well as enzyme or metal oxide surface active sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b03157 | DOI Listing |
ChemSusChem
January 2025
Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology, Chemistry and Biotechnology, AUSTRALIA.
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.
View Article and Find Full Text PDFChemosphere
January 2025
College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore. Electronic address:
Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.
Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects.
View Article and Find Full Text PDFNat Commun
January 2025
Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.
View Article and Find Full Text PDFSci Rep
January 2025
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.
This research successfully synthesized semiconductive magnesioferrite (MgFeO) nanomaterials using a green chemistry method that utilizes the natural extract of Moringa olefeira serving as both a reducing and oxidizing agent. The optical characteristics and crystalline structure of the MgFeO nanomaterials were analysed using photoluminescence, diffuse reflectance spectroscopy, and X-ray diffraction. Additionally, Fourier transform infrared spectroscopy provided valuable insights into the chemical bonding and composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!