A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acquisition of Viewpoint Transformation and Action Mappings via Sequence to Sequence Imitative Learning by Deep Neural Networks. | LitMetric

We propose an imitative learning model that allows a robot to acquire positional relations between the demonstrator and the robot, and to transform observed actions into robotic actions. Providing robots with imitative capabilities allows us to teach novel actions to them without resorting to trial-and-error approaches. Existing methods for imitative robotic learning require mathematical formulations or conversion modules to translate positional relations between demonstrators and robots. The proposed model uses two neural networks, a convolutional autoencoder (CAE) and a multiple timescale recurrent neural network (MTRNN). The CAE is trained to extract visual features from raw images captured by a camera. The MTRNN is trained to integrate sensory-motor information and to predict next states. We implement this model on a robot and conducted sequence to sequence learning that allows the robot to transform demonstrator actions into robot actions. Through training of the proposed model, representations of actions, manipulated objects, and positional relations are formed in the hierarchical structure of the MTRNN. After training, we confirm capability for generating unlearned imitative patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066551PMC
http://dx.doi.org/10.3389/fnbot.2018.00046DOI Listing

Publication Analysis

Top Keywords

positional relations
12
sequence sequence
8
imitative learning
8
neural networks
8
allows robot
8
robot transform
8
proposed model
8
actions
6
imitative
5
robot
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!