Sensorineural hearing loss (SNHL) has been demonstrated in many clinical reports as a risk factor that promotes the development of cognitive impairment. However, the underlying neurological mechanisms are not clear. Noise exposure is one of the most common causes of SNHL. Although noise exposure causes relatively less damage to general health as compared with other methods for creating hearing loss (such as ototoxicity), it does impair cognitive function. Many studies have shown that the noise-induced cognitive impairment occur via the oxidative stress induced by the noise. In those studies, the effects of the noise-induced hearing loss induced (NIHL) were not addressed. Previously, we have demonstrated in the CBA/CaJ mouse model that oxidative stress was transient after a brief noise exposure, but the NIHL was permanent. In addition, NIHL was followed by a declined cognitive function and decreased hippocampal neurogenesis that were developed long after the oxidative stress disappeared. Therefore, NIHL can cause cognitive impairment independent of its stress effect and can serve as a model to investigate the relationship between hearing loss and the development of cognitive impairment. In the present study, we further demonstrated that the oxidative stress produced by the brief noise exposure did not damage the stem cell bank of hippocampus that was evaluated shortly after the noise exposure. In addition to the reduction in the rate of cell proliferation in hippocampus that was found previously, we found that the NIHL significantly reduced the promoting effect of learning activity on various stages of hippocampal neurogenesis, accompanied by the reduction in learning-induced expression of immediate early genes (IEGs) in hippocampus. Since the MWM-tested spatial function does not directly require auditory input, the results provide evidence for the maintenance role of auditory input on the cognitive function; the reduction of IEG expression that is required in memory-formation may be the initial step in blocking the effect of learning activity on neurogenesis in subjects with NIHL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066960PMC
http://dx.doi.org/10.3389/fnsys.2018.00035DOI Listing

Publication Analysis

Top Keywords

hearing loss
20
noise exposure
20
cognitive impairment
16
oxidative stress
16
cognitive function
12
noise-induced hearing
8
development cognitive
8
exposure damage
8
hippocampal neurogenesis
8
learning activity
8

Similar Publications

Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss.

BMC Med Genomics

January 2025

Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.

Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.

View Article and Find Full Text PDF

Speechreading-gathering speech information from talkers' faces-supports speech perception when speech acoustics are degraded. Benefitting from speechreading, however, requires listeners to visually fixate talkers during face-to-face interactions. The purpose of this study is to test the hypothesis that preschool-aged children allocate their eye gaze to a talker when speech acoustics are degraded.

View Article and Find Full Text PDF

Oligogenic effect is associated with the clinical heterogeneity of autosomal dominant deafness-15.

Sci Rep

January 2025

Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.

Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.

View Article and Find Full Text PDF

Progressive Loss of Cerebral Structures in ALG11-Related Congenital Disorder Glycosylation.

Pediatr Neurol

December 2024

Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia. Electronic address:

Background: Congenital disorders of glycosylation (CDG) are a group of metabolic disorders related to dysfunctional glycoprotein and glycolipid biosynthesis. ALG11-related CDG is a rare member of this group, characterized by severe neurodevelopmental impairment, progressive microcephaly, sensorineural hearing loss, and epilepsy. The objective of this report is to provide an update on the phenotype and brain magnetic resonance imaging (MRI) at age seven years for a patient initially described in early infancy with fetal brain disruption sequence.

View Article and Find Full Text PDF

Background: Griscelli syndrome (GS) is a rare genetic disorder characterized by oculocutaneous albinism and variable immune dysfunction. Among three distinct types of GS, occurring due to different genetic mutations; GS type 1 presents with neurological manifestations, hemophagocytic lymphohistiocytosis (HLH) generally develops in GS type 2, and GS type 3 primarily exhibits oculocutaneous albinism. HLH, a life-threatening condition with excessive immune activation, may occur secondary to various triggers, including infections, and develop in different tissues, as well as in the testis, similar to Erdheim-Chester disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!