Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
B lymphocytes use B cell receptors (BCRs) to recognize membrane-bound antigens to further initiate cell spreading and contraction responses during B cell activation. We combined traction force microscopy and live-cell imaging to profile the origin, dynamics, and function of traction force generation in these responses. We showed that B cell activation required the generation of 10 to 20 nN of traction force when encountering antigens presented by substrates with stiffness values from 0.5 to 1 kPa, which mimic the rigidity of antigen-presenting cells in vivo. Perturbation experiments revealed that F-actin remodeling and myosin- and dynein-mediated contractility contributed to traction force generation and B cell activation. Moreover, membrane-proximal BCR signaling molecules (including Lyn, Syk, Btk, PLC-γ2, BLNK, and Vav3) and adaptor molecules (Grb2, Cbl, and Dok-3) linking BCR microclusters and motor proteins were also required for the sustained generation of these traction forces. We found a positive correlation between the strength of the traction force and the mean fluorescence intensity of the BCR microclusters. Furthermore, we demonstrated that isotype-switched memory B cells expressing immunoglobulin G (IgG)-BCRs generated greater traction forces than did mature naïve B cells expressing IgM-BCRs during B cell activation. Last, we observed that primary B cells from patients with rheumatoid arthritis generated greater traction forces than did B cells from healthy donors in response to antigen stimulation. Together, these data delineate the origin, dynamics, and function of traction force during B cell activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scisignal.aai9192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!