Objective: Medical personnel using radiation for diagnosis and therapeutic purposes are potentially at risk of cancer development. In this study, the effect of ionising radiation (IR) exposure was evaluated as DNA damage response (DDR) in the circulating cells of occupationally exposed subjects.
Methods: The study population consisted of IR-exposed workers included both in group B (effective dose ranging between 0.04 and 6 mSv/year) and group A (probable effective dose exceeding 6 mSv/year), and the control group consisted of healthy individuals who had never been occupationally exposed to IR or other known carcinogenic agents. DNA damage (single-strand breaks, oxidised purine and pyrimidine bases) and DNA repair (t, half time to repair DNA damage, amount of repaired DNA and DNA repair activity) were measured in lymphocytes using the comet assay. To evaluate the influence of IR doses and genetic predisposition to cancer, the enrolled population was stratified according to IR exposure level and family history of cancer.
Results: Increased DNA repair activity was found in IR-exposed group, and only subjects highly exposed to IR doses accumulated DNA damage in their circulating cells, thus supporting the hypothesis of 'radiation hormesis'. A significant increase in DNA damage accumulation and a reduced 8-oxoguanine glycosylase 1-dependent DNA repair activity were found in IR-exposed subjects with cancer cases across their family.
Conclusion: Our results indicate that chronic exposure to a low dose of IR in occupational settings induces DDR in exposed subjects and may be mutagenic in workers with family history of cancer, suggesting that periodic surveillance might be advisable, along with exposure monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/oemed-2018-105094 | DOI Listing |
Cell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.
Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).
Mol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2025
Department of endocrinology, the Second People's Hospital of Kunming, Kunming 650203, Yunnan, PR China. Electronic address:
The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!