Sarcolemma (SL) Na+/Ca++ exchange, binding of the Ca++ channel antagonist [3H]nitrendipine and sarcoplasmic reticulum (SR) Ca++ uptake were studied in crude membranes from developing chick heart. Energy-linked Ca++ uptake of mitochondria (MT) was measured in tissue homogenates. When reckoned per unit of heart mass Na+/Ca++ exchange increases linearly (20-fold) from embryonic day 4 to postnatal day 10. These changes correlate strongly with developmental variations of (Na+, K+)ATPase activity. The density of high-affinity [3H]nitrendipine receptors increases in parallel, while the specific affinity does not change SR Ca++ uptake rises steadily during embryogenesis and increases steeply (3-fold) at the time of hatching. Hearts of 10-day-old chickens exhibit 50-fold higher SR Ca++ transport activities than those of 4-day-old embryos. Between the latter stage and postnatal day 10 a more than 100-fold increase of MT Ca++ uptake occurs. The results suggest developmental variations in the contribution of single Ca++ transporting systems in cardiac Ca++ control.
Download full-text PDF |
Source |
---|
Mol Ther
January 2025
Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:
mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco.
According to the FAO, 828 million people were facing acute food insecurity in 2021. Fertilization is a critical input factor in crop production and food security achievement. Therefore, fertilization is a critical input factor in crop production and food security achievement.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:
Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!