The reporting of the first draft of the human genome in 2000 brought with it much hope for the future in what was felt as a paradigm shift toward improved health outcomes. Indeed, we have now mapped the majority of variation across human populations with landmark projects such as 1000 Genomes; in cancer, we have catalogued mutations across the primary carcinomas; whilst, for other diseases, we have identified the genetic variants with strongest association. Despite this, we are still awaiting the genetic revolution in healthcare to materialise and translate itself into the health benefits for which we had hoped. A major problem we face relates to our underestimation of the complexity of the genome, and that of biological mechanisms, generally. Fixation on DNA sequence alone and a 'rigid' mode of thinking about the genome has meant that the folding and structure of the DNA molecule -and how these relate to regulation- have been underappreciated. Projects like ENCODE have additionally taught us that regulation at the level of RNA is just as important as that at the spatiotemporal level of chromatin.In this review, we chart the course of the major advances in the biomedical sciences in the era pre- and post the release of the first draft sequence of the human genome, taking a focus on technology and how its development has influenced these. We additionally focus on gene editing via CRISPR/Cas9 as a key technique, in particular its use in the context of complex biological mechanisms. Our aim is to shift the mode of thinking about the genome to that which encompasses a greater appreciation of the folding of the DNA molecule, DNA- RNA/protein interactions, and how these regulate expression and elaborate disease mechanisms.Through the composition of our work, we recognise that technological improvement is conducive to a greater understanding of biological processes and life within the cell. We believe we now have the technology at our disposal that permits a better understanding of disease mechanisms, achievable through integrative data analyses. Finally, only with greater understanding of disease mechanisms can techniques such as gene editing be faithfully conducted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081867PMC
http://dx.doi.org/10.1186/s12864-018-4963-8DOI Listing

Publication Analysis

Top Keywords

gene editing
12
human genome
8
biological mechanisms
8
mode thinking
8
thinking genome
8
dna molecule
8
greater understanding
8
understanding disease
8
disease mechanisms
8
genome
6

Similar Publications

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction.

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

A Rapid and Reversible Molecular "Switch" Regulating Protein Expression in Chlamydomonas reinhardtii.

Plant Cell Environ

January 2025

Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Chlamydomonas reinhardtii, a prominent chassis in synthetic biology, faces limitations in regulating the expression of exogenous genes. A destabilization domain (DD)/Shield-1 system, originally derived from mammals, offers a ligand-dependent control of stability, making it a valuable tool. This system utilises the destabilization domain to induce rapid degradation of target protein unless stabilised by Shield-1, a synthetic ligand.

View Article and Find Full Text PDF

A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer.

Nanoscale

January 2025

Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.

CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!