In systematic efforts toward a new type of molecule-based porous materials, facile and efficient synthetic methods have been established to obtain macrocyclic [Zr] and supercage-like {[Zr]}, where [Zr] represents [ZrO(OH)(CO) ] building unit commonly found in Zr-based metal-organic frameworks. The reactions involve in situ hydrolysis of DMF solvent to produce formate linkers and thus do not require any organic ligand. A minor variation in the composition of two cyclic hexamers thus obtained results in dramatic differences in crystal packing which in turn lead to distinctive and selective sorption behavior for water vapor. It is shown that the high heat of water adsorption and unrestricted uptake under high humidity are consequences of the highly polar surface and flexible crystal packing. The reversibility of water adsorption is demonstrated by cyclic measurements of uptake and regeneration under dynamic flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b06757DOI Listing

Publication Analysis

Top Keywords

water vapor
8
crystal packing
8
water adsorption
8
zirconium-formate macrocycles
4
macrocycles supercage
4
supercage molecular
4
molecular packing
4
packing versus
4
versus mof-like
4
mof-like network
4

Similar Publications

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenol content (from 552 to 324 mg GAE/g lignin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!