Mechanochemical enhancement of the natural attenuation capacity of soils using two organophosphate biocides as models.

J Hazard Mater

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), Key Laboratory of Solid Waste Management and Environment Safety, School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.

Published: October 2018

Mechanochemical treatment by high energy ball milling is a promising technology to safely destroy organic pollutants in contaminated soil and allow its possible beneficial reuse. The present study investigates the mechanochemical activation of four major soil components, which induces generation of electrons on particle surfaces. Such phenomenon is demonstrated to occur on oxides by formation of trapped electrons in oxygen vacancies (following a zeroth-order kinetics), as well as on quartz and clayey materials to form fresh electron-rich surfaces by homolytic bond rapture (according to a first-order kinetics). Two toxic organophosphate biocides (i.e. chlorpyrifos and glyphosate) are used as model pollutants. Results show that the aromatic structure of chlorpyrifos determines a faster degradation rate, compared to the aliphatic one of glyphosate, because of the higher stability of generated radical intermediates. Moreover, the aromatic moiety facilitates adsorption on clays, thus temporarily sequestering the molecule and delaying its degradation. The many heteroatoms in both organophosphates have analogous fate: mineralization to inorganic form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.07.089DOI Listing

Publication Analysis

Top Keywords

organophosphate biocides
8
mechanochemical enhancement
4
enhancement natural
4
natural attenuation
4
attenuation capacity
4
capacity soils
4
soils organophosphate
4
biocides models
4
models mechanochemical
4
mechanochemical treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!