HIF prolyl hydroxylase 1 (PHD1) functions in prolyl hydroxylation on mammal hypoxia-inducible factors (HIF), important transcription factors involved in hypoxia, however the roles of Phd1 in fish remain unclear. In this study, the full-length cDNA and promoter sequences of blunt snout bream (Megalobrama amblycephala) phd1 gene were isolated by a modified RACE strategy. The phd1 cDNA was 2672 bp for encoding 481 amino acid residues. In silico assays indicated that phd1 had 5 exons, and a 348 bp CpG island in the exon1, and several transcription factor binding sites (CAAT box, HRE, ARNT, FOX, etc) were also found on the promoter. The quantitative real-time PCR results suggested that phd1 mRNA was constitutively expressed in all detected tissues, and higher in the blood, brain and heart in normoxia, but significantly decreased after hypoxia in all detected tissues except for gill. Western blot assays indicated that two Phd1 isoforms were generated by alternative translation initiation. Moreover, these two isoforms were both localized in the nucleus, therein only the senior isoform promoted cell proliferation. Taken together, the present study firstly describes the functions of M. amblycephala two Phd1 isoforms in hypoxia and cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2018.08.012 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Environmental Sciences Department, Wageningen University & Research, Wageningen 6708 PB, The Netherlands.
The boreal forest biome is warming four times faster than the global average. Changes so far are moderate, but time lags in responses may transiently maintain forest states which are no longer supported by current environmental conditions. Here, we explore whether tree cover dynamics hint at the state to which the biome may be shifting.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFNat Biotechnol
December 2024
Insilico Medicine US, Inc., Boston, MA, USA.
Hypoxia-inducible factor prolyl hydroxylase (PHD) inhibitors have been approved for treating renal anemia yet have failed clinical testing for inflammatory bowel disease because of a lack of efficacy. Here we used a multimodel multimodal generative artificial intelligence platform to design an orally gut-restricted selective PHD1 and PHD2 inhibitor that exhibits favorable safety and pharmacokinetic profiles in preclinical studies. ISM012-042 restores intestinal barrier function and alleviates gut inflammation in multiple experimental colitis models.
View Article and Find Full Text PDFJ Clin Invest
November 2024
Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States of America.
Am J Pathol
November 2024
Department of General, Visceral, and Transplantation Surgery, Heidelberg University, Heidelberg, Germany; Department of General, Visceral, Thoracic, and Transplantation Surgery, University of Giessen, Giessen, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!