Atomic comagnetometers are used in searches for anomalous spin-dependent interactions. Magnetic field gradients are one of the major sources of systematic errors in such experiments. Here we describe a comagnetometer based on the nuclear spins within an ensemble of identical molecules. The dependence of the measured spin-precession frequency ratio on the first-order magnetic field gradient is suppressed by over an order of magnitude compared to a comagnetometer based on overlapping ensembles of different molecules. Our single-species comagnetometer is capable of measuring the hypothetical spin-dependent gravitational energy of nuclei at the 10^{-17}  eV level, comparable to the most stringent existing constraints. Combined with techniques for enhancing the signal such as parahydrogen-induced polarization, this method of comagnetometry offers the potential to improve constraints on spin-gravity coupling of nucleons by several orders of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.023202DOI Listing

Publication Analysis

Top Keywords

comagnetometer based
12
identical molecules
8
magnetic field
8
nuclear-spin comagnetometer
4
based liquid
4
liquid identical
4
molecules atomic
4
atomic comagnetometers
4
comagnetometers searches
4
searches anomalous
4

Similar Publications

Searches for exotic spin-dependent interactions with spin sensors.

Rep Prog Phys

December 2024

CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, atomic comagnetometers, spin masers, nuclear magnetic resonance, spin amplifiers, and nitrogen-vacancy centers.

View Article and Find Full Text PDF

A laser beam with left-/right-handed circular polarization is generally used to create the oriented atomic spins for precision measurements in a spin-exchange relaxation-free (SERF) co-magnetometer. The fluctuation of laser polarization interferes with the spin polarization of alkali metal atoms, leading to the system performance degradation. Here, we report a method for real-time polarization state measurement by using the transmitted light intensity of the pump beam passing through the vapor cell.

View Article and Find Full Text PDF

New Classes of Magnetic Noise Self-Compensation Effects in Atomic Comagnetometer.

Phys Rev Lett

July 2024

CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.

Precision measurements of anomalous spin-dependent interactions are often hindered by magnetic noise and other magnetic systematic effects. Atomic comagnetometers use the distinct spin precession of two species and have emerged as important tools for effectively mitigating the magnetic noise. Nevertheless, the operation of existing comagnetometers is limited to very low-frequency noise commonly below 1 Hz.

View Article and Find Full Text PDF

Modeling of nonlinear and nonstationary stochasticity for atomic ensembles.

ISA Trans

December 2023

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310023, China.

This paper addresses the problem of stochastic modeling of atomic ensembles under multi-source noise and makes the model interpretable. First, based on Itô's lemma and Allan variance analysis (ITÔ-AVAR), an approach is proposed to model nonstationary stochastic submodels of atomic ensembles. On this basis, the variance decomposition and nonlinear optimization algorithms are utilized to hybridize modeling atomic ensembles with nonlinear and nonstationary properties.

View Article and Find Full Text PDF

The Rb polarization-induced magnetic field gradient affects the Xe nuclear spin relaxation properties and degrades the long-term stability of the NMR co-magnetometers. This paper proposes a combination suppressing scheme, which uses the second-order magnetic field gradient coils to compensate for the Rb polarization-induced magnetic gradient under counter-propagating pump beams. Based on the theoretical simulation, we find that the spatial distribution of the Rb polarization-induced magnetic gradient and the magnetic field distribution generated by gradient coils are complementary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!