Interactions between mineral surfaces and organic molecules are fundamental to life processes. The presence of cations in natural environments can change the behavior of organic compounds and thus alter the mineral-organic interfaces. We investigated the influence of Na, Mg, Ca, Sr, and Ba on the interaction between two models, self-assembled monolayers, that were tailored to have hydrophobic -CH or hydrophilic -COO(H) terminations. Atomic force microscopy in chemical force mapping mode, where the tips were functionalized with the same terminations, was used to measure adhesion forces between the tip and substrate surfaces, to gather fundamental information about the role of these cations in the behavior of organic compounds and the surfaces where they adsorb. Adhesion force between hydrophobic surfaces in 0.5 M NaCl solutions that contained 0.012 M divalent cations did not change, regardless of the ionic potential, that is, the charge per unit radius, of the cation. For systems where one or the other surface was functionalized with carboxylate, -COO(H), mostly in its deprotonated form, -COO, a reproducible change in the adhesion force was observed for each of the ions. The trend of increasing adhesion force followed the pattern: Na ≈ Mg < Sr < Ca < Ba, suggesting that ionic potential, thus hydrated radius, controls the interaction. The presence of a -CH surface in the asymmetric system leads to lower adhesion forces than in the hydrophilic system, whereas the ionic trend remains the same. Although specific ion effects are felt in both systems, the lower adhesion force in the asymmetric system, compared with the hydrophilic system, implies that the -CH surface plays an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01720 | DOI Listing |
Circ Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
ACS Appl Bio Mater
January 2025
Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Sandia National Laboratories, Center for Integrated Nanotechnologies, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, UNITED STATES.
Interlocking metasurfaces (ILMs) are patterned arrays of mating features that enable the joining of bodies by constraining motion and transmitting force. They offer an alternative to traditional joining solutions such as mechanical fasteners, welds, and adhesives. This study explores the development of bio-inspired ILMs using a problem-driven bioinspired design (BID) framework.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China. Electronic address:
The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!