Native proteomics aims to characterize complex proteomes under native conditions and ultimately produces a full picture of endogenous protein complexes in cells. It requires novel analytical platforms for high-resolution and liquid-phase separation of protein complexes prior to native mass spectrometry (MS) and MS/MS. In this work, size-exclusion chromatography (SEC)-capillary zone electrophoresis (CZE)-MS/MS was developed for native proteomics in discovery mode, resulting in the identification of 144 proteins, 672 proteoforms, and 23 protein complexes from the Escherichia coli proteome. The protein complexes include four protein homodimers, 16 protein-metal complexes, two protein-[2Fe-2S] complexes, and one protein-glutamine complex. Half of them have not been reported in the literature. This work represents the first example of online liquid-phase separation-MS/MS for the characterization of a complex proteome under the native condition, offering the proteomics community an efficient and simple platform for native proteomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156775PMC
http://dx.doi.org/10.1021/acs.analchem.8b02725DOI Listing

Publication Analysis

Top Keywords

native proteomics
16
protein complexes
16
proteomics discovery
8
discovery mode
8
mass spectrometry
8
native
7
complexes
6
protein
5
mode size-exclusion
4
size-exclusion chromatography-capillary
4

Similar Publications

Proteomic Profile of in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.

Int J Mol Sci

January 2025

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.

Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution.

Pathogens

December 2024

Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.

Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.

View Article and Find Full Text PDF

Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers.

Nat Protoc

January 2025

Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.

Individual ion mass spectrometry (IMS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, IMS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. IMS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution.

View Article and Find Full Text PDF

Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics.

Nat Commun

January 2025

Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.

Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!