The increasing use of gold nanoparticles leads to a possible increase of exposure by inhalation. Therefore, we have studied the deposition patterns of inhaled 20 nm gold nanoparticles (AuNP) in 7-90 day old rats and their biokinetics in 60 day old ones. Wistar-Kyoto rats inhaled intratracheally 20 nm Au-radiolabeled AuNP by negative pressure ventilation over 2 h. Immediately afterward lungs were excised, inflated and microwave dried. AuNP deposition was analyzed by single-photon emission computed tomography, computed-tomography and autoradiography. Completely balanced, quantitative biodistributions in major organs and all body tissues and total excretion were analyzed from 1 h to 28 d after inhalation. Intratracheal inhalation caused AuNP deposition predominately in the caudal lungs, independent of age. About 30% AuNP were deposited on airway epithelia and rapidly cleared by mucociliary clearance. About 80% of AuNP deposited in alveoli was relocated from the epithelium into the interstitium within 24 h and was inaccessible to broncho-alveolar lavage. During interstitial long-term retention, re-entrainment within macrophages back onto the lung epithelium and to the larynx and gastrointestinal tract (GIT) dominated AuNP clearance (rate 0.03 d) In contrast, AuNP-translocation across the air-blood barrier was much smaller leading to persistent retention in secondary organs and tissues in the ranking order liver > soft issue > spleen > kidneys > skeleton > blood > uterus > heart > brain. The age-independent, inhomogeneous AuNP deposition was probably caused by the negative pressure ventilation. Long-term AuNP clearance was dominated by macrophage-mediated transport from the interstitium to the larynx and GIT. Translocation across the rat air-blood barrier appeared to be similar to that of humans for similar sized AuNP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b01826DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
12
aunp deposition
12
aunp
10
deposition patterns
8
patterns inhaled
8
negative pressure
8
pressure ventilation
8
aunp deposited
8
aunp clearance
8
air-blood barrier
8

Similar Publications

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

Background And Aim: In animal husbandry, antibiotics are frequently used as growth promoters, as well as for illness prevention and treatment. They are considered important toxic and allergenic contaminants of food and a serious risk factor for the spread of antibiotic resistance. National and international regulatory authorities have established limits on the permissible residue of antibiotics in food.

View Article and Find Full Text PDF

Quantifying Monomer-Dimer Distribution of Nanoparticles from Uncorrelated Optical Images Using Deep Learning.

ACS Omega

January 2025

Nanotechnology, IoT and Applied Machine Learning Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh.

Nanoparticles embedded in polymer matrices play a critical role in enhancing the properties and functionalities of composite materials. Detecting and quantifying nanoparticles from optical images (fixed samples-in vitro imaging) is crucial for understanding their distribution, aggregation, and interactions, which can lead to advancements in nanotechnology, materials science, and biomedical research. In this article, we propose an ensembled deep learning approach for automatic nanoparticle detection and oligomerization quantification in a polymer matrix for optical images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!