For the influence of temperature drift of the spectral responsivity on the repeatability infrared spectral emissivity measurement system, a temperature drift correction method is proposed based on the polynomial fitting. By analyzing the function of detector output voltage depended on its temperature. After studying the functional relationship between the temperature and spectral responsivity of detector, the spectral response curve varies with temperature is fitted and get the fitting equation. Calculating the drift correction factor of spectral responsivity, the output voltage of infrared detector is corrected. The effect of spectral response drift on the output voltage of detector is eliminated. With the development of temperature drift correction device of spectral responsivity, the temperature drift curve of spectral response is measured. Compared to the exponential fitting, the fitting consistency of sixth-order polynomial curve is excellent. Because of the application of this method, the repeatability of spectral emissivity measurement system is improved.

Download full-text PDF

Source

Publication Analysis

Top Keywords

temperature drift
20
spectral responsivity
16
spectral emissivity
12
emissivity measurement
12
drift correction
12
output voltage
12
spectral response
12
spectral
10
temperature
8
infrared spectral
8

Similar Publications

The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-CoO-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-CoO-C exhibited great catalytic activity ( = 177 °C) and water resistance (5.

View Article and Find Full Text PDF

Sub-lethal exposures to bifenthrin impact stress responses and behavior of juvenile Chinook Salmon.

Environ Toxicol Chem

January 2025

Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, Yolo County, CA, 95616USA.

Juvenile Chinook Salmon (Oncorhynchus tshawytscha) populations have decreased substantially in the Sacramento-San Joaquin Delta (Delta) over the past decades, so considerably that two of the four genetically distinct runs are now listed in the Endangered Species Act. One factor responsible for this decline is the presence of contaminants in the Delta. Insecticides, used globally in agricultural, industrial, and household settings, have the potential to contaminate nearby aquatic systems through spray drift, runoff, and direct wastewater discharge.

View Article and Find Full Text PDF

Antarctic Geothermal Soils Exhibit an Absence of Regional Habitat Generalist Microorganisms.

Environ Microbiol

January 2025

Thermophile Research Unit, Te Aka Mātuatua, School of Science, Te Whare Wānanga o Waikato, University of Waikato, Hamilton, Aotearoa-New Zealand.

Active geothermal systems are relatively rare in Antarctica and represent metaphorical islands ideal to study microbial dispersal. In this study, we tested the macro-ecological concept that high dispersal rates result in communities being dominated by either habitat generalists or specialists by investigating the microbial communities on four geographically separated geothermal sites on three Antarctic volcanoes (Mts. Erebus, Melbourne, and Rittman).

View Article and Find Full Text PDF

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!