We examined phase shifts to bright morning light when sleep was restricted by delaying bedtimes. Adolescents (n = 6) had 10-h sleep/dark opportunities for 6 days. For the next 2 days, half were put to bed 4.5 h later and then allowed to sleep for 5.5 h (evening room light + sleep restriction). The others continued the 10-h sleep opportunities (sleep satiation). Then, sleep schedules were gradually shifted earlier and participants received bright light (90 min, ~6000 lux) after waking for 3 days. As expected, sleep satiation participants advanced (~2 h). Evening room light + sleep restriction participants did not shift or delayed by 2-4 h. Abbreviations: DLMO: dim light melatonin onset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269208 | PMC |
http://dx.doi.org/10.1080/07420528.2018.1504784 | DOI Listing |
Sensors (Basel)
January 2025
Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.
View Article and Find Full Text PDFSensors (Basel)
January 2025
European Southern Observatory, Santiago 7630000, Chile.
The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA.
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.
View Article and Find Full Text PDFNeural Netw
January 2025
Hefei University of Technology, Hefei, 230601, China; The Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, Hefei, 230601, China.
Low-light image enhancement (LLIE) aims to improve the visibility and illumination of low-light images. However, real-world low-light images are usually accompanied with flares caused by light sources, which make it difficult to discern the content of dark images. In this case, current LLIE and nighttime flare removal methods face challenges in handling these flared low-light images effectively: (1) Flares in dark images will disturb the content of images and cause uneven lighting, potentially resulting in overexposure or chromatic aberration; (2) the slight noise in low-light images may be amplified during the process of enhancement, leading to speckle noise and blur in the enhanced images; (3) the nighttime flare removal methods usually ignore the detailed information in dark regions, which may cause inaccurate representation.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
This paper demonstrates the use of organic thin-film transistors (OTFTs) to drive active digital mini light-emitting diode (mini-LED) backlights, aiming to achieve exceptional display performance. Our findings reveal that OTFTs can effectively power mini-LED backlights, reaching brightness levels exceeding 100,000 nits. This approach not only enhances image quality but also improves energy efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!