Feeding at unusual times of the day is thought to be associated with obesity and metabolic disorders in both experimental animals and humans. We previously reported that time-imposed feeding during the sleep phase (daytime feeding, DF) induces obesity and metabolic disorders compared with mice fed only during the active phase (nighttime feeding, NF). The present study aimed to determine whether leptin resistance is caused by DF, and whether it is involved in the underlying mechanisms of DF-induced obesity in mice, since leptin plays an essential role in regulating energy expenditure and adiposity in addition to food intake. We compared leptin sensitivity by evaluating the effects of exogenous injected leptin on food intake and body weight in wild-type C57BL/6J mice under NF and DF. The mice were fed with a high-fat high-sucrose diet throughout the study. To determine whether leptin resistance is a cause or a result of DF-induced obesity with metabolic disorders, we restricted the feeding times of leptin resistant db/db mice. We also examined leptin sensitivity in leptin deficient ob/ob mice under NF and DF to elucidate the underlying mechanisms of DF-induced leptin resistance. C57BL/6J mice under DF gained more weight and adiposity compared with mice under NF, and developed hyperleptinemia and hypothermia. We found that six days of DF abolished exogenous leptin-induced hypophagia and reduction in body weight in mice. We also found that the leptin injection significantly suppressed the mRNA expression of lipogenic genes in the liver of NF, but not in DF mice, suggesting that short-term DF was sufficient to induce metabolic leptin resistance. The DF-induced increases in body weight gain, food efficiency, adipose tissue mass, lipogenic gene expression in metabolic tissues, and hepatic lipid accumulation were abolished in db/db mice, suggesting that the leptin resistance is a cause of DF-induced metabolic disorders. DF resulted in deep hypothermia in db/db, as well as in wild-type mice, suggesting that a decrease in energy expenditure was not the main cause of DF-induced obesity. Exogenous leptin reduced the body weight of ob/ob mice under both NF and DF, and the effect was significantly higher in DF- than in NF-ob/ob mice. Therefore, the development of DF-induced leptin resistance requires endogenous leptin, and central leptin sensitivity fluctuates in a circadian manner. The present findings suggest that leptin resistance is responsible for DF-induced obesity and metabolic disorders, and that the circadian fluctuation of central leptin sensitivity might be involved in leptin resistance induced by DF, although further studies are needed to elucidate the mechanisms of metabolic disorders that depend on the time of feeding. Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; ANOVA, analysis of variance; DF, daytime feeding; FFA, free fatty acid; HOMA-IR, homeostasis model assessment of insulin resistance; NEAT, non-exercise activity thermogenesis; NF, nighttime feeding; PI3, phosphatidylinositol 3; RF, restricted feeding; RW, running-wheel; SCN, suprachiasmatic nucleus; SEM, standard error of the mean; STAT3, signal transducer and activator of transcription 3; T-Cho, total cholesterol; TG, triglyceride; WAT, white adipose tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07420528.2018.1496927DOI Listing

Publication Analysis

Top Keywords

leptin resistance
36
metabolic disorders
28
leptin
20
obesity metabolic
20
df-induced obesity
16
leptin sensitivity
16
body weight
16
mice
15
mice suggesting
12
feeding
10

Similar Publications

The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats.

Nutrients

January 2025

Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.

View Article and Find Full Text PDF

We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, highlighting potential biomarkers for CVD in PCOS.

Methods: In this exploratory cross-sectional study, plasma levels of 54 CVRPs were analyzed in women with PCOS (n = 147) and controls (n = 97).

View Article and Find Full Text PDF

Does Sex Matter in Obesity-Induced Periodontal Inflammation in the SS Mutant Rats?

Dent J (Basel)

December 2024

Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.

The incidence of obesity has dramatically increased worldwide. Obesity has been shown to exacerbate the progression of periodontal disease. Studies suggest a sex difference in periodontitis, whereby males are more sensitive to periodontal inflammation compared to females.

View Article and Find Full Text PDF

Context: During pregnancy, women who experience certain pregnancy complications show elevations in biomarkers of inflammation and insulin resistance; however, few studies have examined these cardiometabolic biomarkers in the decade following pregnancy.

Objective: To examine the association between pregnancy complications and cardiometabolic biomarkers 9 years postpartum including: blood pressure, blood lipids, body fat percentage, insulin resistance (glucose, insulin, proinsulin, C-peptide, HOMA-IR, HbA1c, leptin, adiponectin) and inflammation (hs-C-reactive protein).

Methods: Using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort study (2008-2021) we determined 3 groups of pregnancy complications: 1) hypertensive disorders of pregnancy (HDP) (n=35); any pregnancy complication in the index pregnancy, defined as preterm birth, HDP, impaired glucose tolerance or gestational diabetes mellitus (GDM) (n=55); or self-reported recurrence of one of these pregnancy complications (n=19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!