Nanoparticles can be used to transport a variety of biological cargoes into eukaryotic cells. Polypeptides provide a versatile material for constructing such systems. Previously, we have assembled nanoscale peptide cages (SAGEs) from de novo designed coiled-coil modules. Here, we show that the modules can be extended with short charged peptides to alter endocytosis of the assembled SAGE particles by cultured human cells in a tunable fashion. First, we find that the peptide extensions affect coiled-coil stability predictably: N-terminal polylysine and C-terminal polyglutamate tags are destabilizing; whereas, the reversed arrangements have little impact. Second, the cationic assembled particles are internalized faster and to greater extents by cells than the parent SAGEs. By contrast, anionic decorations markedly inhibit both aspects of uptake. These studies highlight how the modular SAGE system facilitates rational peptide design to fine-tune the bioactivity of nanoparticles, which should allow engineering of tailored cell-delivery vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b02633DOI Listing

Publication Analysis

Top Keywords

peptide cages
8
modifying self-assembled
4
peptide
4
self-assembled peptide
4
cages control
4
control internalization
4
internalization mammalian
4
cells
4
mammalian cells
4
cells nanoparticles
4

Similar Publications

Besides their nutritional role, proteins are recognized for their ability to regulate both short- and long-term energy homeostasis. However, studies investigating the effects of proteins based on their quality and origin remain limited and often lack comparability. Nonetheless, existing research consistently underscores the influence of proteins on food intake regulation.

View Article and Find Full Text PDF

Synthetic Notch (SynNotch) receptors function like natural Notch proteins and can be used to install customized sense-and-respond capabilities into mammalian cells. Here, we introduce an adaptor-based strategy for regulating SynNotch activity via fluorescein isomers and analogs. Using an optimized fluorescein-binding SynNotch receptor, we describe ways to chemically control SynNotch signaling, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o-nitrobenzyl-caged fluorescein conjugate.

View Article and Find Full Text PDF

β-Glucan induced plasma B cells differentiation to enhance antitumor immune responses by Dectin-1.

BMC Immunol

January 2025

Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.

Background: B lymphocytes, essential in cellular immunity as antigen-presenting cells and in humoral immunity as major effector cells, play a crucial role in the antitumor response. Our previous work has shown β-glucan enhanced immunoglobulins (Ig) secretion. But the specific mechanisms of B-cell activation with β-glucan are poorly understood.

View Article and Find Full Text PDF

Aging and voluntary exercise's effects on Aβ1-42 levels, endoplasmic reticulum stress factors, and apoptosis in the hippocampus of old male rats.

Brain Res

January 2025

Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:

Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer's disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases.

View Article and Find Full Text PDF

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!