Importance: To date, there is no diagnostic test for Kawasaki disease (KD). Diagnosis is based on clinical features shared with other febrile conditions, frequently resulting in delayed or missed treatment and an increased risk of coronary artery aneurysms.
Objective: To identify a whole-blood gene expression signature that distinguishes children with KD in the first week of illness from other febrile conditions.
Design, Setting, And Participants: The case-control study comprised a discovery group that included a training and test set and a validation group of children with KD or comparator febrile illness. The setting was pediatric centers in the United Kingdom, Spain, the Netherlands, and the United States. The training and test discovery group comprised 404 children with infectious and inflammatory conditions (78 KD, 84 other inflammatory diseases, and 242 bacterial or viral infections) and 55 healthy controls. The independent validation group comprised 102 patients with KD, including 72 in the first 7 days of illness, and 130 febrile controls. The study dates were March 1, 2009, to November 14, 2013, and data analysis took place from January 1, 2015, to December 31, 2017.
Main Outcomes And Measures: Whole-blood gene expression was evaluated using microarrays, and minimal transcript sets distinguishing KD were identified using a novel variable selection method (parallel regularized regression model search). The ability of transcript signatures (implemented as disease risk scores) to discriminate KD cases from controls was assessed by area under the curve (AUC), sensitivity, and specificity at the optimal cut point according to the Youden index.
Results: Among 404 patients in the discovery set, there were 78 with KD (median age, 27 months; 55.1% male) and 326 febrile controls (median age, 37 months; 56.4% male). Among 202 patients in the validation set, there were 72 with KD (median age, 34 months; 62.5% male) and 130 febrile controls (median age, 17 months; 56.9% male). A 13-transcript signature identified in the discovery training set distinguished KD from other infectious and inflammatory conditions in the discovery test set, with AUC of 96.2% (95% CI, 92.5%-99.9%), sensitivity of 81.7% (95% CI, 60.0%-94.8%), and specificity of 92.1% (95% CI, 84.0%-97.0%). In the validation set, the signature distinguished KD from febrile controls, with AUC of 94.6% (95% CI, 91.3%-98.0%), sensitivity of 85.9% (95% CI, 76.8%-92.6%), and specificity of 89.1% (95% CI, 83.0%-93.7%). The signature was applied to clinically defined categories of definite, highly probable, and possible KD, resulting in AUCs of 98.1% (95% CI, 94.5%-100%), 96.3% (95% CI, 93.3%-99.4%), and 70.0% (95% CI, 53.4%-86.6%), respectively, mirroring certainty of clinical diagnosis.
Conclusions And Relevance: In this study, a 13-transcript blood gene expression signature distinguished KD from other febrile conditions. Diagnostic accuracy increased with certainty of clinical diagnosis. A test incorporating the 13-transcript disease risk score may enable earlier diagnosis and treatment of KD and reduce inappropriate treatment in those with other diagnoses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233768 | PMC |
http://dx.doi.org/10.1001/jamapediatrics.2018.2293 | DOI Listing |
Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Technology, Akure, Ondo, Nigeria.
Background: In recent decades, epidemiological and experimental studies have looked into the role of pesticides, particularly the herbicide paraquat, in the development of Parkinson's disease. Horseradish tree (Moringa oleifera) is an ethnobotanical plant with lots of therapeutic potential, but there is a dearth of information on the bioactive properties of the seed alkaloid extracts.
Method: This study examined the modulatory effects of various concentrations of an alkaloid extract from the seeds of Horseradish Tree (Moringa oleifera) on the survival rate of flies exposed to paraquat, as well as certain biochemical and molecular markers related to Parkinson's disease in the heads of the flies.
Alzheimers Dement
December 2024
Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.
Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!