Background: Extubation failure is associated with mortality and morbidity in the intensive care unit. Ventilator weaning protocols have been introduced, and extubation is conducted based on the results of a spontaneous breathing trial. Room for improvement still exists in extubation management, and additional objective indices may improve the safety of the weaning and extubation process. Static lung-thorax compliance reflects lung expansion difficulty that is caused by several conditions, such as atelectasis, fibrosis, and pleural effusion. Nevertheless, it is not used commonly in the weaning and extubation process. In this study, we investigated whether lung-thorax compliance is a good index of extubation failure in adults even when patients pass a spontaneous breathing trial.

Methods: In a single-center, retrospective cohort study, patients over 18 years of age were mechanically ventilated, weaned with proportional assist ventilation, and underwent a spontaneous breathing trial process in surgical intensive care units of Kagawa University Hospital from July 2014 to June 2016. Extubation failure was the outcome measure of the study. We defined extubation failures as when patients were reintubated or underwent non-invasive positive-pressure ventilation within 24 h after extubation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the clinical involvement of several parameters. The area under the curve (AUC) was calculated to assess the discriminative power of the parameters.

Results: We analyzed 173 patients and compared the success and failure groups. Most patients (162, 93.6%) were extubated successfully, and extubation failed in 11 patients (6.4%). The averages of lung-thorax compliance values in the success and failure groups were 71.9 ± 23.0 and 43.3 ± 14.6 mL/cmHO, respectively, and were significantly different ( < 0.0001). In the ROC curve analysis, the AUC was highest for lung-thorax compliance (0.862), followed by the respiratory rate (0.821), rapid shallow breathing index (0.781), Acute Physiology and Chronic Health Evaluation II score (0.72), heart rate (0.715), and tidal volume (0.695).

Conclusions: Lung-thorax compliance measured during a spontaneous breathing trial is a potential indicator of extubation failure in postoperative patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069862PMC
http://dx.doi.org/10.1186/s40560-018-0313-9DOI Listing

Publication Analysis

Top Keywords

lung-thorax compliance
16
spontaneous breathing
16
extubation failure
16
breathing trial
12
intensive care
12
extubation
11
good extubation
8
surgical intensive
8
care unit
8
retrospective cohort
8

Similar Publications

Prolonged mechanical ventilation (PMV) after lung transplantation poses several risks, including higher tracheostomy rates and increased in-hospital mortality. Mechanical power (MP) of artificial ventilation unifies the ventilatory variables that determine gas exchange and may be related to allograft function following transplant, affecting ventilator weaning. We retrospectively analyzed consecutive double lung transplant recipients at a national transplant center, ventilated through endotracheal tubes upon ICU admission, excluding those receiving extracorporeal support.

View Article and Find Full Text PDF

Background: Evidence suggests differences in ventilation efficiency and respiratory mechanics between early COVID-19 pneumonia and classical acute respiratory distress syndrome (ARDS), as measured by established ventilatory indexes, such as the ventilatory ratio (VR; a surrogate of the pulmonary dead-space fraction) or mechanical power (MP; affected, e.g., by changes in lung-thorax compliance).

View Article and Find Full Text PDF

Since critical respiratory muscle workload is a significant determinant of weaning failure, applied mechanical power (MP) during artificial ventilation may serve for readiness testing before proceeding on a spontaneous breathing trial (SBT). Secondary analysis of a prospective, observational study in 130 prolonged ventilated, tracheotomized patients. Calculated MP's predictive SBT outcome performance was determined using the area under receiver operating characteristic curve (AUROC), measures derived from k-fold cross-validation (likelihood ratios, Matthew's correlation coefficient [MCC]), and a multivariable binary logistic regression model.

View Article and Find Full Text PDF

Background: Mechanical power (MP) of artificial ventilation, the energy transferred to the respiratory system, is a chief determinant of adequate oxygenation and decarboxylation. Calculated MP, the product of applied airway pressure and minute ventilation, may serve as an estimate of respiratory muscle workload when switching to spontaneous breathing. The aim of the study was to assess MP's discriminatory performance in predicting successful weaning from prolonged tracheostomy ventilation.

View Article and Find Full Text PDF

This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung-thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO/FiO), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!