The localization of charge carriers by electronic repulsion was suggested by Mott in the 1930s to explain the insulating state observed in supposedly metallic NiO. The Mott metal-insulator transition has been subject of intense investigations ever since-not least for its relation to high-temperature superconductivity. A detailed comparison to real materials, however, is lacking because the pristine Mott state is commonly obscured by antiferromagnetism and a complicated band structure. Here we study organic quantum spin liquids, prototype realizations of the single-band Hubbard model in the absence of magnetic order. Mapping the Hubbard bands by optical spectroscopy provides an absolute measure of the interaction strength and bandwidth-the crucial parameters that enter calculations. In this way, we advance beyond conventional temperature-pressure plots and quantitatively compose a generic phase diagram for all genuine Mott insulators based on the absolute strength of the electronic correlations. We also identify metallic quantum fluctuations as a precursor of the Mott insulator-metal transition, previously predicted but never observed. Our results suggest that all relevant phenomena in the phase diagram scale with the Coulomb repulsion U, which provides a direct link to unconventional superconductivity in cuprates and other strongly correlated materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-018-0140-3DOI Listing

Publication Analysis

Top Keywords

quantum spin
8
spin liquids
8
genuine mott
8
mott state
8
phase diagram
8
mott
6
liquids unveil
4
unveil genuine
4
state localization
4
localization charge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!