Enhancement of information transfer has been proposed as a key driver of the evolution of coloniality. Transfer of information on location of food resources implies that individuals from the same colony share foraging areas and that each colony can be associated to a specific foraging area. In colonial breeding vertebrates, colony-specific foraging areas are often spatially segregated, mitigating intercolony intraspecific competition. By means of simultaneous GPS tracking of lesser kestrels (Falco naumanni) from neighbouring colonies, we showed a clear segregation of space use between individuals from different colonies. Foraging birds from different neighbouring colonies had home ranges that were significantly more segregated in space than expected by chance. This was the case both between large and between small neighbouring colonies. To our knowledge, the lesser kestrel is the only terrestrial species where evidence of spatial segregation of home ranges between conspecifics from neighbouring colonies has been demonstrated. The observed spatial segregation pattern is consistent with the occurrence of public information transfer about foraging areas and with the avoidance of overexploited areas located between neighbouring colonies. Our findings support the idea that spatial segregation of exploited areas may be widespread among colonial avian taxa, irrespective of colony size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078973 | PMC |
http://dx.doi.org/10.1038/s41598-018-29933-2 | DOI Listing |
Sci Adv
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, laboratory studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
A polyphasic taxonomic study was carried out on strain T9W2-O, isolated from the roots of the aquatic plant . This isolate is rod-shaped, forms yellow/orange pigmented colonies and produces the pigment flexirubin. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFPlant Dis
January 2025
Huazhong Agricultural University, College of Plant Science and Technology, Wuhan, Hubei , China;
China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Evolutionary Biology and Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. Electronic address:
Recognition protects biological systems at all scales, from cells to societies. Social insects recognize their nestmates by colony-specific olfactory labels that individuals store as neural templates in their memory. Throughout an ant's life, learning continuously shapes the nestmate recognition template to keep up with the constant changes in colony labels.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!