Mobile small RNAs serve as local positional signals in development and coordinate stress responses across the plant. Despite its central importance, an understanding of how the cell-to-cell movement of small RNAs is governed is lacking. Here, we show that miRNA mobility is precisely regulated through a gating mechanism polarised at defined cell-cell interfaces. This generates directional movement between neighbouring cells that limits long-distance shoot-to-root trafficking, and underpins domain-autonomous behaviours of small RNAs within stem cell niches. We further show that the gating of miRNA mobility occurs independent of mechanisms controlling protein movement, identifying the small RNA as the mobile unit. These findings reveal gate-keepers of cell-to-cell small RNA mobility generate selectivity in long-distance signalling, and help safeguard functional domains within dynamic stem cell niches while mitigating a 'signalling gridlock' in contexts where developmental patterning events occur in close spatial and temporal vicinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079027PMC
http://dx.doi.org/10.1038/s41467-018-05571-0DOI Listing

Publication Analysis

Top Keywords

small rnas
12
gating mirna
8
defined cell-cell
8
cell-cell interfaces
8
positional signals
8
mirna mobility
8
stem cell
8
cell niches
8
small rna
8
small
5

Similar Publications

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!