Internalization of Titanium Dioxide Nanoparticles Is Cytotoxic for H9c2 Rat Cardiomyoblasts.

Molecules

Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.

Published: August 2018

Titanium dioxide nanoparticles (TiO₂ NPs) are widely used in industry and daily life. TiO₂ NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO₂ NPs on H9c2 rat cardiomyoblasts. Internalization of TiO₂ NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO₂ NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H₂DCFDA oxidation. TiO₂ NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO₂ NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222559PMC
http://dx.doi.org/10.3390/molecules23081955DOI Listing

Publication Analysis

Top Keywords

tio₂ nps
28
oxidative stress
12
titanium dioxide
8
dioxide nanoparticles
8
h9c2 rat
8
rat cardiomyoblasts
8
cell proliferation
8
stress cell
8
cell death
8
cell cycle
8

Similar Publications

Mechanistic Insights into the Effects of Aged Polystyrene Nanoplastics on the Toxicity of Cadmium to Triticum Aestivum.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.

The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.

View Article and Find Full Text PDF

Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing.

Adv Healthc Mater

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF

Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis.

View Article and Find Full Text PDF

Three different cathodic materials for the hydrogen evolution reaction (HER) consisting of Ru nanoparticles (NPs) supported onto a bare and two doped reduced graphene oxides (r-GO) have been studied. Ru NPs have been synthesized in situ by means of the organometallic approach in the presence of each reduced graphene support (bare (rGO), N-doped (NH-rGO) and P-doped (P-rGO)). (HR)TEM, EDX, EA, ICP-OES, XPS, Raman and NMR techniques have been used to fully characterize the obtained rGO-supported Ru materials.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!