Download full-text PDF

Source
http://dx.doi.org/10.4244/EIJ-D-18-00230DOI Listing

Publication Analysis

Top Keywords

evaluation dual-layer
4
dual-layer micromesh
4
micromesh stent
4
stent system
4
system carotid
4
carotid artery
4
artery 12-month
4
12-month clear-road
4
clear-road study
4
evaluation
1

Similar Publications

Insect-inspired passive wing collision recovery in flapping wing microrobots.

Bioinspir Biomim

January 2025

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Flying insects have developed two distinct adaptive strategies to minimize wing damage during collisions. One strategy includes an elastic joint at the leading edge, which is evident in wasps and beetles, while another strategy features an adaptive and deformable leading edge, as seen in bumblebees and honeybees. Inspired by the latter, a novel approach has been developed for improving collision recovery in micro aerial vehicles (MAVs) by mimicking the principle of stiffness anisotropy present in the leading edges of these insects.

View Article and Find Full Text PDF

Objectives: To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules.

Materials And Methods: Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV.

View Article and Find Full Text PDF

The construction of a double-layer colon-targeted delivery system based on zein-shellac complex and gelatin-isomaltooligosaccharide Maillard product: In vitro and in vivo evaluation.

Food Res Int

January 2025

College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China. Electronic address:

In this study, we developed a double-layer colon-targeted microcapsule. It used the Maillard product of gelatin-isomaltooligosaccharide (GI180) and zein-shellac complex (ZS) as bio-based materials, plant extracts (MPL) and Lactobacillus plantarum JJBYG12 (JJBYG12) were co-encapsulated, endowing them with strong resistance to harsh environments and precise intestinal adhesion and targeting ability. The research results indicated that ZS11 exhibits hydrogen bonding and electrostatic interactions.

View Article and Find Full Text PDF

This paper presents a novel approach for generating virtual non-contrast planning computed tomography (VNC-pCT) images from contrast-enhanced planning CT (CE-pCT) scans using a deep learning model. Unlike previous studies, which often lacked sufficient data pairs of contrast-enhanced and non-contrast CT images, we trained our model on dual-energy CT (DECT) images, using virtual non-contrast CT (VNC CT) images as outputs instead of true non-contrast CT images. We used a deterministic method to convert CE-pCT images into pseudo DECT images for model application.

View Article and Find Full Text PDF

This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!