Drug discovery campaigns directly targeting the voltage-gated sodium channel NaV1.7, a highly prized target in chronic pain, have not yet been clinically successful. In a differentiated approach, we demonstrated allosteric control of trafficking and activity of NaV1.7 by prevention of SUMOylation of collapsin response mediator protein 2 (CRMP2). Spinal administration of a SUMOylation incompetent CRMP2 (CRMP2 K374A) significantly attenuated pain behavior in the spared nerve injury (SNI) model of neuropathic pain, underscoring the importance of SUMOylation of CRMP2 as a pathologic event in chronic pain. Using a rational design strategy, we identified a heptamer peptide harboring CRMP2's SUMO motif that disrupted the CRMP2-Ubc9 interaction, inhibited CRMP2 SUMOylation, inhibited NaV1.7 membrane trafficking, and specifically inhibited NaV1.7 sodium influx in sensory neurons. Importantly, this peptide reversed nerve injury-induced thermal and mechanical hypersensitivity in the SNI model, supporting the practicality of discovering pain drugs by indirectly targeting NaV1.7 via prevention of CRMP2 SUMOylation. Here, our goal was to map the unique interface between CRMP2 and Ubc9, the E2 SUMO conjugating enzyme. Using computational and biophysical approaches, we demonstrate the enzyme/substrate nature of Ubc9/CRMP2 binding and identify hot spots on CRMP2 that may form the basis of future drug discovery campaigns disrupting the CRMP2-Ubc9 interaction to recapitulate allosteric regulation of NaV1.7 for pain relief.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104687 | PMC |
http://dx.doi.org/10.1080/19336950.2018.1491244 | DOI Listing |
Amino Acids
December 2024
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697-3900, USA.
Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To confirm and explore the significance of isoaspartyl damage in CRMP2, we expressed and purified recombinant mouse CRMP2 (rCRMP2).
View Article and Find Full Text PDFFront Neural Circuits
December 2024
Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Functional recovery from brain damage, such as stroke, is a plastic process in the brain. The excitatory glutamate -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) plays a crucial role in neuronal functions, and the synaptic trafficking of AMPAR is a fundamental mechanism underlying synaptic plasticity. We recently identified a collapsin response mediator protein 2 (CRMP2)-binding compound, edonerpic maleate, which augments rehabilitative training-dependent functional recovery from brain damage by facilitating experience-driven synaptic delivery of AMPARs.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China. Electronic address:
Objective: Our study aimed to investigate the role of CRMP2 in mossy fiber sprouting (MFS) using a pilocarpine-induced rat model of epilepsy.
Methods: First, the rats were sacrificed on the 1, 7, 14 and 28 day after pilocarpine injection. Quantitative Real-time PCR (qPCR) and Western blot (WB) were performed to assess mRNA and protein levels in the hippocampus and cortex.
Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To conflrm and explore the signiflcance of isoaspartyl damage in CRMP2, we expressed and purifled recombinant mouse CRMP2 (rCRMP2).
View Article and Find Full Text PDFNeuromolecular Med
November 2024
Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-Ku, Tokyo, 162-8480, Japan.
Neurodegenerative disease characterized by the progressive damage of the nervous system, and neuropathies caused by the neuronal injury are both led to substantial impairments in neural function and quality of life among geriatric populations. Recovery from nerve damage and neurodegenerative diseases present a significant challenge, as the central nervous system (CNS) has limited capacity for self-repair. Investigating mechanism of neurodegeneration and regeneration is essential for advancing our understanding and development of effective therapies for nerve damage and degenerative conditions, which can significantly enhance patient outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!