Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photoaging can be induced by long-term ultraviolet (UV)A eye irradiation, but an ameliorating method for such photoaging is not known. In this study, we examined the effects of tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) on photoaging of the skin induced by UVA eye irradiation. We used the C57BL/6 j female mice and locally exposed their eyes to UVA at a dose of 110 kJ/m using an FL20SBLB-A lamp multiple times a week for one year. The plasma urocortin 2, β-endorphin, methionine enkephalin (OGF), and histamine content, as well as the expression of the corticotropin-releasing hormone receptor (CRHR) type 2, μ-opioid receptor, opioid growth factor receptor (OGFR), T-bet, and GATA3 increased in the mice subjected to UVA eye irradiation. However, the increased levels of urocortin 2, methionine enkephalin, histamine, OGFR, T-bet, and GATA3 were suppressed by tranexamic acid treatment. Conversely, the levels of β-endorphin and μ-opioid receptor increased with tranexamic acid treatment. In addition, the expression of the estrogen receptor-β on the surface of mast cells was increased by tranexamic acid. These results indicate that photoaging induced by UVA eye irradiation can be ameliorated by tranexamic acid through the regulation of hypothalamo-pituitary hormones. Furthermore, this ameliorative effect on photoaging may be due to an increase in estrogen receptor-β after tranexamic acid treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.07.146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!