The dissolution and permeation of the cocrystals, flufenamic acid-nicotinamide (FFA-NIC) and flufenamic acid-theophylline (FFA-TP), have been investigated in the presence of two polymers, polyvinylpyrrolidone (PVP) and copolymer of vinylpyrrolidone/vinyl acetate (PVP-VA), using a dissolution/permeation (D/P) system. It showed that the types and concentrations of the polymers and their interactions with the coformers had significant effects on the dissolution and permeation of the FFA cocrystals. The role of PVP as a stabilizing agent was not altered in spite of its interaction with the coformer of NIC or TP, which was supported by the proportional flux rate of FFA to the dissolution performance parameter (DPP). With an appropriate PVP concentration, the maximal flux rate of FFA could be obtained for a given FFA cocrystal. The situation was complicated in the presence of PVP-VA. The role of PVP-VA could change because of its association with the coformers, i.e., from a stabilizing agent to a solubilization agent. In addition, PVP-VA reduced the flux rate of FFA, in contrast to its DPP for FFA cocrystals. Finally, H NMR provided evidence regarding the molecular interactions between FFA, coformers, and polymers at the atomic level and gave insight into the mechanism underlying the supersaturated solution and subsequent permeation behavior of the cocrystals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.8b00670DOI Listing

Publication Analysis

Top Keywords

dissolution permeation
12
flux rate
12
rate ffa
12
permeation behavior
8
ffa cocrystals
8
stabilizing agent
8
ffa
7
cocrystals
5
investigating permeation
4
behavior flufenamic
4

Similar Publications

The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.

View Article and Find Full Text PDF

Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers.

View Article and Find Full Text PDF

The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.

View Article and Find Full Text PDF

Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system (CNS) injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection.

View Article and Find Full Text PDF

: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!