Distinct transcriptional states are maintained through organization of chromatin, resulting from the sum of numerous repressive and active histone modifications, into tightly packaged heterochromatin versus more accessible euchromatin. Polycomb repressive complex 2 (PRC2) is the main mammalian complex responsible for histone 3 lysine 27 trimethylation (H3K27me3) and is integral to chromatin organization. Using in vitro and in vivo studies, we show that deletion of Suz12, a core component of all PRC2 complexes, results in loss of H3K27me3 and H3K27 dimethylation (H3K27me2), completely blocks normal mammary gland development, and profoundly curtails progenitor activity in 3D organoid cultures. Through the application of mammary organoids to bypass the severe phenotype associated with Suz12 loss in vivo, we have explored gene expression and chromatin structure in wild-type and Suz12-deleted basal-derived organoids. Analysis of organoids led to the identification of lineage-specific changes in gene expression and chromatin structure, inferring cell type-specific PRC2-mediated gene silencing of the chromatin state. These expression changes were accompanied by cell cycle arrest but not lineage infidelity. Together, these data indicate that canonical PRC2 function is essential for development of the mammary gland through the repression of alternate transcription programs and maintenance of chromatin states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095611PMC
http://dx.doi.org/10.1371/journal.pbio.2004986DOI Listing

Publication Analysis

Top Keywords

mammary gland
12
canonical prc2
8
prc2 function
8
function essential
8
gland development
8
mammary organoids
8
gene expression
8
expression chromatin
8
chromatin structure
8
chromatin
7

Similar Publications

Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs.

View Article and Find Full Text PDF

Objective: analysis of molecular genetic phenotypes, their proliferative activity, degree of spread and differentiation of tumors in breast cancer patients affected by the accident at the Chornobyl Nuclear Power Plant.

Materials And Methods: 96 breast cancer patients who were exposed to ionizing radiation as a result of the accident at the Chornobyl Nuclear Power Plant were examined. Clinical, radiological, instrumental, morphological,immunohistochemical research methods were used.

View Article and Find Full Text PDF

Feed cost represents about 70% of the total production costs of rabbit farms. There is little research on the usage of Berseem and Fenugreek seeds as substitutes for soybeans in rabbit diets. The current investigation was conducted to assess the influence of dietary inclusion of Fenugreek and/or Berseem seeds at varying levels as a substitute for soybean meal on reproductive performance, milk production, maternal behaviour, economic efficiency, mammary gland and ovarian histology, and relative expression of reproductive genes of New Zealand White rabbit does.

View Article and Find Full Text PDF

Introduction: Maternal nutrition during pregnancy critically influences offspring development and immune function. One-carbon metabolites (OCM) are epigenetic modifiers that may modulate antimicrobial peptide (AMP) expression, which is vital for innate immunity. This study investigated the effects of maternal nutrient restriction and OCM supplementation on mRNA expression of AMP in fetal and maternal lung, mammary gland, and small intestine of beef cattle.

View Article and Find Full Text PDF

Non-toxic core-shell nanowires for extracellular vesicle scavenging.

Chem Commun (Camb)

December 2024

Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

Extracellular vesicles (EVs) from cancer cells promote abnormal growth in normal cells, potentially leading to cancer proliferation. We developed a nanowire-based EV-elimination device that efficiently eliminated EVs without toxicity. This method restored normal growth in mammary gland cells cultured with breast adenocarcinoma-derived EVs containing medium treated with the device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!