The oxygen isotopic composition (δO) of plant organic matter (OM) is primarily governed by the δO of source water (δO) and climatic factor of relative humidity (RH). Among the cereals, the growth of rice plants is critically dependent on the water availability in the growth-environment. In the present study, we investigated the sensitivity of δO in the bulk organic matter of rice grains to RH of their growth-environment. Our experimental setup consisted of both glasshouse and field experiments, where eight genotypes were grown at RH levels ranging from 67% to 87%. The δO measured in bulk grain OM and source water was used to calculate the net oxygen isotopic enrichment (ΔO). Regression analysis of ΔO with RH demonstrated a significant relationship (r = 0.96; p < 0.0001), thereby implying that the isotopic signature of evaporative conditions gets recorded in the rice grain OM. In addition, our study involved a separate experiment that monitored the degree of oxygen isotope enrichment in water samples extracted from different parts of the rice plant. For this purpose, we sampled four of the above eight genotypes along with three other rice genotypes that were grown in both open cultivation fields and glasshouse. Water present in the culms, leaves, and grains were extracted quantitatively. Isotopic analyses revealed progressive O enrichment of the water in the culms and leaves and intermediate enrichment values of that in the grains. Based on the isotope data, we validated mechanistic models for prediction of δO of the leaf water and that of the plant carbohydrates. The model predictions were in close agreement with the experimental observations. The study provides insights into the rice plant's oxygen isotope systematics that build the foundation for future applications of the stable isotope technique to study the interactions between rice and environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.05.022 | DOI Listing |
Adv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.
View Article and Find Full Text PDFFreshwater waterways, and species that depend on them, are threatened by urbanisation and the consequences of the urban stream syndrome. In south-east Queensland, Australia, little is known about the impacts of the urban stream syndrome on the platypus (), meaning that populations cannot be adequately managed by conservation practitioners. The aim of this study was to determine how habitat and environmental variables, related to the urban stream syndrome, influenced platypus distribution across this region.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668-Boadilla del Monte, Madrid, Spain.
The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!