The legume-rhizobium symbiotic relationship has been widely studied and characterized. However, little information is available about the role of histone lysine methyltransferases in the legume-rhizobium interaction and in the formation of nitrogen-fixing nodules in the common bean. Thus, this study aimed to gain a better understanding of the epigenetic control of nodulation in the common bean. Specifically, we studied the role of PvTRX1h, a histone lysine methyltransferase coding gene, in nodule development and auxin biosynthesis. Through a reverse genetics approach, we generated common bean composite plants to knock-down PvTRX1h expression. Here we found that the down-regulation of PvTRX1h increased the number of nodules per plant, but reduced the number of colony-forming units recovered from nodules. Genes coding for enzymes involved in the synthesis of the indole-3-acetic acid were up-regulated, as was the concentration of this hormone. In addition, PvTRX1h down-regulation altered starch accumulation as determined by the number of amyloplasts per nodule. Metabolic fingerprinting by direct liquid introduction-electrospray ionization-mass spectrometry (DLI-ESI-MS) revealed that the root nodules were globally affected by PvTRX1h down-regulation. Therefore, PvTRX1h likely acts through chromatin histone modifications that alter the auxin signaling network to determine bacterial colonization, nodule number, starch accumulation, hormone levels, and cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.05.006 | DOI Listing |
Food Chem
January 2025
Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium. Electronic address:
Pulse flours consisting of isolated cotyledon cells (ICC) have been incorporated in foods with delayed amylolysis. To optimize the cost-benefit ratio, understanding how the dosage of cellular ingredient affects starch digestibility is essential. Therefore, dose-response relationships were established to evaluate the sensitivity of amylolysis kinetics to the inclusion of intact cells in whole common bean-based flours.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Laboratório de Genética de Microrganismos (LAGEM), Departamento de Biologia Geral - CCB, Universidade Estadual de Londrina - Campus Universitário, Londrina, PR, Brazil.
The common bean (Phaseolus vulgaris L.) plays a significant economic and social role in Brazil. However, the national average yield remains relatively low, largely because most bean cultivation is undertaken by small-scale farmers.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.
View Article and Find Full Text PDFFood Funct
January 2025
Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
(), one of the most common infectious pathogens in the world, can cause gastritis, digestive ulcers, and even gastric cancer. urease (HPU) is a distinctive virulence factor of that allows it to be distinguished from other pathogens. Dried ginger is a famous edible and medicinal herb that is commonly used to prevent and treat gastrointestinal tract-related diseases.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman.
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!