Physics-based derivation of a formula for the mutual depolarization of two post-like field emitters.

J Phys Condens Matter

Department of Exact Sciences and Education (CEE), Universidade Federal de Santa Catarina, Campus Blumenau, Rua João Pessoa, 2514, Velha, Blumenau 89036-004, SC, Brazil.

Published: September 2018

Recent analyses of the apex field enhancement factor (FEF) for many forms of field emitter have revealed that the depolarization effect is more persistent with respect to the separation between the emitters than originally assumed. It has been shown that, at sufficiently large separations, the fractional reduction of the FEF decays with the inverse cube power of separation, rather than exponentially. The behavior of the fractional reduction of the FEF encompassing both the range of technological interest [Formula: see text] (c being the separation and h is the height of the emitters) and large separations ([Formula: see text]) has not been predicted by the existing formulas in field emission literature, for post-like emitters of any shape. In this work, we use first principles to derive a simple two-parameter formula for fractional reduction that can be useful for experimentalists for modeling and interpreting the FEFs for small clusters of emitters or arrays at separations of interest. For the structures tested, the agreement between numerical and analytical data is  ∼1%.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aad84cDOI Listing

Publication Analysis

Top Keywords

fractional reduction
12
large separations
8
reduction fef
8
[formula text]
8
emitters
5
physics-based derivation
4
derivation formula
4
formula mutual
4
mutual depolarization
4
depolarization post-like
4

Similar Publications

Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes.

J Gastroenterol

January 2025

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Background: To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset.

Methods: Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP).

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) refers to cognitive alterations with preservation of functionality. Individuals with this diagnosis have a higher risk of developing dementia. Non-pharmacological interventions, such as physical exercise, are beneficial for the cognition of this population.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates various techniques for guiding percutaneous coronary intervention (PCI) to determine which yields the best patient outcomes.
  • It analyzes data from 39 randomized trials involving over 29,000 patients, highlighting that intravascular imaging (like OCT and IVUS) and physiology-guided strategies (like FFR) significantly reduce cardiac death compared to traditional coronary angiography (CA).
  • Overall, the results suggest that OCT is the most effective guidance method, leading to lower rates of myocardial infarction, stent thrombosis, and all-cause mortality compared to CA.
View Article and Find Full Text PDF

Objectives: Screening for obstructive coronary artery disease (CAD) with coronary computed tomography angiography (CCTA) could prevent unnecessary invasive coronary angiography (ICA) procedures during work-up for trans-catheter aortic valve implantation (TAVI). CT-derived fractional flow reserve (CT-FFR) improves CCTA accuracy in chest pain patients. However, its reliability in the TAVI population is unknown.

View Article and Find Full Text PDF

Multimodal MRI analysis of microstructural and functional connectivity brain changes following systematic audio-visual training in a virtual environment.

Neuroimage

December 2024

Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany. Electronic address:

Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!