Quantum Dot-Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins.

Small

NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell, Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, Orsay, France.

Published: August 2018

Engineered scaffold affinity proteins are used in many biological applications with the aim of replacing natural antibodies. Although their very small sizes are beneficial for multivalent nanoparticle conjugation and efficient Förster resonance energy transfer (FRET), the application of engineered affinity proteins in such nanobiosensing formats has been largely neglected. Here, it is shown that very small (≈6.5 kDa) histidine-tagged albumin-binding domain-derived affinity proteins (ADAPTs) can efficiently self-assemble to zwitterionic ligand-coated quantum dots (QDs). These ADAPT-QD conjugates are significantly smaller than QD-conjugates based on IgG, Fab', or single-domain antibodies. Immediate applicability by the quantification of the human epidermal growth factor receptor 2 (HER2) in serum-containing samples using time-gated Tb-to-QD FRET detection on the clinical benchtop immunoassay analyzer KRYPTOR is demonstrated here. Limits of detection down to 40 × 10 m (≈8 ng mL ) are in a relevant clinical concentration range and outperform previously tested assays with antibodies, antibody fragments, and nanobodies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201802266DOI Listing

Publication Analysis

Top Keywords

affinity proteins
16
quantum dot-based
4
dot-based fret
4
fret immunoassay
4
immunoassay her2
4
her2 ultrasmall
4
affinity
4
ultrasmall affinity
4
proteins
4
proteins engineered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!