gene encodes a non-opioid endoplasmic reticulum (ER) protein which is involved in a large diversity of cell functions and is expressed ubiquitously in both central and peripheral nervous systems. Alterations of its normal function may contribute to two different phenotypes: juvenile amyotrophic lateral sclerosis (ALS 16) and distal hereditary motor neuropathies (dHMN). We present the case of a female patient, of 37-years-old, with distal muscle weakness and atrophy beginning in childhood and slowly progressive in the first two decades of life. Neurological examination revealed a symmetrical severe muscle wasting and weakness in distal lower and upper limbs, with claw hands, footdrop with equinovarus deformity and hammer toes, generalized areflexia and normal sensory examination. The electrodiagnostic study revealed a pure chronic motor peripheral nerve involvement without signs of demyelination. The molecular study found the deletion c.561_576del on exon 4 and a deletion of all exon 4, in the gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060428PMC

Publication Analysis

Top Keywords

distal hereditary
8
hereditary motor
8
gene mutation
4
mutation causing
4
distal
4
causing distal
4
motor neuropathy
4
neuropathy portuguese
4
portuguese family
4
family gene
4

Similar Publications

Arthrogryposis, which represents a group of congenital disorders, includes various forms. One such form is amyoplasia, which most commonly presents in a sporadic form in addition to distal forms, among which hereditary cases may occur. This condition is characterized by limited joint mobility and muscle weakness, leading to limb deformities and various clinical manifestations.

View Article and Find Full Text PDF

A Novel Variant in a Charcot-Marie-Tooth Type 2: Insights from Familial Analysis.

Genes (Basel)

November 2024

Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy.

Background/objectives: Axonal Charcot-Marie-Tooth disease type 2 (CMT2) accounts for 24% of Hereditary Motor/Sensory Peripheral Neuropathies. CMT2 type GG, due to four distinct heterozygous mutations in the Golgi brefeldin A resistant guanine nucleotide exchange factor 1 () gene (OMIM 606483), was described in seven cases from four unrelated families with autosomal dominant inheritance. It is characterized by slowly progressive distal muscle weakness and atrophy, primarily affecting the lower limbs.

View Article and Find Full Text PDF

Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations.

Clin Epigenetics

December 2024

Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.

View Article and Find Full Text PDF

Background: Hereditary Sensory Motor Neuropathy (HSMN) 1A and Multiple Sclerosis (MS) are distinct demyelinating disorders affecting the peripheral and central nervous systems, respectively. We present a case of simultaneous occurrence of both conditions, exploring the clinical presentation, diagnostic workup, and potential interplay between these diseases. Case presentation and clinical approach: A 49-year-old male with a history of optic neuritis presented with progressive numbness, weakness, and sensory loss in all extremities over four years.

View Article and Find Full Text PDF

Axonal Charcot-Marie-Tooth disease (CMT2) and distal hereditary motor neuropathy (dHMN) are associated with a heterogeneous group of genes encoding proteins that are involved in axonal transport, control of RNA metabolism, mitochondrial dynamics and DNA repair. VRK1 (vaccinia-related kinase 1) is a serine/threonine kinase which is widely expressed in human tissue and plays a role in RNA maturation and processing and in DNA damage response. Variants of VRK1 have been associated with neurodevelopmental and neuromuscular disorders including pontocerebellar hypoplasia, motor neuron disorders and distal hereditary motor neuropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!