The use of existing mouse models in cancer research is of utmost importance as they aim to explore the casual link between candidate cancer genes and carcinogenesis as well as to provide models to develop and test new therapies. However, faster progress in translating mouse cancer model research into the clinic has been hampered due to the limitations of these models to better reflect the complexities of human tumors. Traditionally, immunocompetent and immunodeficient mice with syngeneic and xenografted tumors transplanted subcutaneously or orthotopically have been used. These models are still being widely employed for many different types of studies, in part due to their widespread availability and low cost. Other types of mouse models used in cancer research comprise transgenic mice in which oncogenes can be constitutively or conditionally expressed and tumor-suppressor genes silenced using conventional methods, such as retroviral infection, microinjection of DNA constructs, and the so-called "gene-targeted transgene" approach. These traditional transgenic models have been very important in studies of carcinogenesis and tumor pathogenesis, as well as in studies evaluating the development of resistance to therapy. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing approach has revolutionized the field of mouse cancer models and has had a profound and rapid impact on the development of more effective systems to study human cancers. The CRISPR/Cas9-based transgenic models have the capacity to engineer a wide spectrum of mutations found in human cancers and provide solutions to problems that were previously unsolvable. Recently, humanized mouse xenograft models that accept patient-derived xenografts and CD34+ cells were developed to better mimic tumor heterogeneity, the tumor microenvironment, and cross-talk between the tumor and stromal/immune cells. These features make them extremely valuable models for the evaluation of investigational cancer therapies, specifically new immunotherapies. Taken together, improvements in both the CRISPR/Cas9 system producing more valid mouse models and in the humanized mouse xenograft models resembling complex interactions between the tumor and its environment might represent one of the successful pathways to precise individualized cancer therapy, leading to improved cancer patient survival and quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062593 | PMC |
http://dx.doi.org/10.3389/fonc.2018.00268 | DOI Listing |
J Pharm Pharmacol
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.
Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.
Hepatology
January 2025
Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFSci Transl Med
January 2025
University of Strasbourg, INSERM, Strasbourg Translational Neuroscience & Psychiatry STEP-CRBS, UMR-S 1329, 67000 Strasbourg, France.
Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.
View Article and Find Full Text PDFSci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!