Assembly of rigid amyloid fibrils with their characteristic cross-β sheet structure is a molecular signature of numerous neurodegenerative and non-neuropathic disorders. Frequently large populations of small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs), and have been implicated in amyloid toxicity. Yet our understanding of the origin of these metastable oligomers, their role as on-pathway precursors or off-pathway competitors, and their effects on the self-assembly of amyloid fibrils remains incomplete. Using two unrelated amyloid proteins, amyloid-β and lysozyme, we find that gO/CF formation, analogous to micelle formation by surfactants, is delineated by a "critical oligomer concentration" (COC). Below this COC, fibril assembly replicates the sigmoidal kinetics of nucleated polymerization. Upon crossing the COC, assembly kinetics becomes biphasic with gO/CF formation responsible for the lag-free initial phase, followed by a second upswing dominated by RF nucleation and growth. RF lag periods below the COC, as expected, decrease as a power law in monomer concentration. Surprisingly, the build-up of gO/CFs above the COC causes a progressive increase in RF lag periods. Our results suggest that metastable gO/CFs are off-pathway from RF formation, confined by a condition-dependent COC that is distinct from RF solubility, underlie a transition from sigmoidal to biphasic assembly kinetics and, most importantly, not only compete with RFs for the shared monomeric growth substrate but actively inhibit their nucleation and growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050532PMC
http://dx.doi.org/10.1039/c8sc01479eDOI Listing

Publication Analysis

Top Keywords

origin metastable
8
metastable oligomers
8
amyloid fibrils
8
go/cf formation
8
assembly kinetics
8
nucleation growth
8
lag periods
8
amyloid
6
coc
6
formation
5

Similar Publications

All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI is easily transformed back to the nonperovskite yellow phase at ambient temperature.

View Article and Find Full Text PDF

Structural Origin of Dynamic Heterogeneity in Supercooled Liquids.

J Phys Chem B

January 2025

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

As a liquid is supercooled toward the glass transition point, its dynamics slow significantly, provided that crystallization is avoided. With increased supercooling, the particle dynamics become more spatially heterogeneous, a phenomenon known as dynamic heterogeneity. Since its discovery, this characteristic of metastable supercooled liquids has garnered considerable attention in glass science.

View Article and Find Full Text PDF

Investigating skyrmion stability and core polarity reversal in NdMnGe.

Sci Rep

January 2025

Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

We report the pressure-temperature (-) phase diagram, the origin of the subglass dynamics, and the crystallization kinetics of the biobased polyester poly(ethylene 2,5-furanoate) (PEF), through dielectric spectroscopy (DS) measurements performed as a function of temperature and pressure. The phase diagram comprises four different "phases"; glass, quenched melt, crystalline, and normal melt. The cold crystallization temperature, , increases linearly with pressure (according to the Clausius-Clapeyron equation) as / ∼ 240 K·GPa and is accompanied by a small change in specific volume (Δ = 0.

View Article and Find Full Text PDF

Manipulating π-π Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers.

Phys Rev Lett

December 2024

Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.

Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!