Light can be used to modify and control properties of media, as in the case of electromagnetically induced transparency or, more recently, for the generation of slow light or bright coherent XUV and X-ray radiation. Particularly unusual states of matter can be created by light fields with strengths comparable to the Coulomb field that binds valence electrons in atoms, leading to nearly-free electrons oscillating in the laser field and yet still loosely bound to the core [1,2]. These are known as Kramers-Henneberger states [3], a specific example of laser-dressed states [2]. Here, we demonstrate that these states arise not only in isolated atoms [4,5], but also in rare gases, at and above atmospheric pressure, where they can act as a gain medium during laser filamentation. Using shaped laser pulses, gain in these states is achieved within just a few cycles of the guided field. The corresponding lasing emission is a signature of population inversion in these states and of their stability against ionization. Our work demonstrates that these unusual states of neutral atoms can be exploited to create a general ultrafast gain mechanism during laser filamentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071854 | PMC |
http://dx.doi.org/10.1038/s41567-018-0105-0 | DOI Listing |
Cureus
November 2024
Department of General Surgery, Juntendo University Nerima Hospital, Tokyo, JPN.
An obturator hernia (OH) is a rare type of hernia that accounts for a very small proportion of all hernias and cases of small bowel obstruction. This condition predominantly affects older, underweight individuals, with the vast majority of patients being women. Laparotomy with simple suture closure of the defect is commonly used as surgical treatment for OH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron-hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from NbAlC MAX phase powders while concurrently forming NbOF anchors on NbCT nanosheet (NbCTNS) MXene, leading to the in situ formation of a NbCTNS/NbOF heterostructure composite.
View Article and Find Full Text PDFSmall
December 2024
School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, P. R. China.
2D photodetectors operating in photovoltaic mode exhibit a trade-off between response speed and photoresponsivity. This work presents a phototransistor based on SnS/ReSe heterojunction. Under negative bias, the energy band spike at the heterojunction interface impedes the carrier drifting so that the dark current is as low as 10 A.
View Article and Find Full Text PDFDiscov Med
December 2024
Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland.
Photodynamic therapy (PDT) is emerging as a promising treatment for many diseases. This non-invasive approach uses photosensitizing agents and light to selectively destroy abnormal cells, providing a valuable alternative to traditional treatments. Scientists are investigating the use of PDT in various areas of the head, and their work is focused on a growing number of new discoveries and methods for treating cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!