In extratropical ecosystems, the growth of trees is cyclic, producing tree rings composed of large-lumen and thin-walled cells (earlywood) alternating with narrow-lumen and thick-walled cells (latewood). So far, the physiology behind wood formation processes and the associated kinetics has rarely been considered to explain this pattern. We developed a process-based mechanistic model that simulates the development of conifer tracheids, explicitly considering the processes of cell enlargement and the deposition and lignification of cell walls. The model assumes that (1) wall deposition gradually slows down cell enlargement and (2) the deposition of cellulose and lignin is regulated by the availability of soluble sugars. The model reliably reproduces the anatomical traits and kinetics of the tracheids of four conifer species. At the beginning of the growing season, low sugar availability in the cambium results in slow wall deposition that allows for a longer enlargement time; thus, large cells with thin walls (i.e., earlywood) are produced. In late summer and early autumn, high sugar availability produces narrower cells having thick cell walls (i.e., latewood). This modeling framework provides a mechanistic link between plant ecophysiology and wood phenology and significantly contributes to understanding the role of sugar availability during xylogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063077 | PMC |
http://dx.doi.org/10.3389/fpls.2018.01053 | DOI Listing |
Nutrients
December 2024
Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.
View Article and Find Full Text PDFCells
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.
View Article and Find Full Text PDFJ Behav Med
January 2025
Department of Counseling Psychology and Human Services, Prevention Science Institute, University of Oregon, Eugene, OR, USA.
Executive functioning (EF) has been linked to chronic disease risk in children. Health behaviors are thought to partially explain this association. The current cross-sectional study evaluated specific domains of EF and varied health behaviors in three pediatric life stages.
View Article and Find Full Text PDFArch Virol
January 2025
Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France.
A novel capulavirus was identified by high-throughput sequencing in four sugar beet (Beta vulgaris L.) plants collected in April 2023 in Normandy (France). The complete genome of 2744 nucleotides (nt) was sequenced and found to have an organization similar to that of known capulaviruses, with which it showed close phylogenetic relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!