Traffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that determine the mitigation caused by solid barriers, we still have questions about how vegetative barriers affect dispersion. The US EPA conducted several field experiments to understand the effects of vegetation barriers on dispersion of pollutants near roadways (e.g., 2008 North Carolina study and 2014 California study) that indicate the reduction of near-road pollutant concentrations can be up to 30% due to the barrier effects. The results of these field studies are being used to develop and evaluate dispersion models that account for the effects of near-road vegetative barriers. These models can be used for evaluating the effectiveness of vegetation barriers as a potential mitigation strategy to reduce exposure to traffic-related pollutants and their associated adverse health effects. This paper presents the results of the analysis of the field studies and discusses dispersion models being used to describe the data in order to simulate the effects of near-road barriers and to develop recommendations for model improvements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071432 | PMC |
http://dx.doi.org/10.1504/IJEP.2017.10010370 | DOI Listing |
Microbiol Spectr
January 2025
Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.
View Article and Find Full Text PDFChemosphere
January 2025
College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore. Electronic address:
Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
A serious limitation to the deployment of IoT solutions in rural areas may be the lack of available telecommunications infrastructure enabling the continuous collection of measurement data. A nomadic computing system, using a UAV carrying an on-board gateway, can handle this; it leads, however, to a number of technical challenges. One is the intermittent collection of data from ground sensors governed by weather conditions for the UAV measurement missions.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Spatial Technologies and Remote Sensing (CSTARS), Institute of the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA. Electronic address:
Estuaries are complex ecosystems, being difficult to determine the way management actions affect them. This study quantitatively evaluated the spread of invasive submerged and floating aquatic macrophyte vegetation in Franks Tract of the Sacramento-San Joaquin Delta in response to two types of management actions, drought salinity barriers in years 2015, 2021 and 2022, and herbicide treatments in years 2004-2022. A Random Forest algorithm applied to airborne hyperspectral and satellite multispectral images generated maps of macrophyte cover in 2004-2022.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Changchun Urban Planning and Research Center/Changchun Institute of Urban Planning and Design, Changchun 130028, China.
Jilin Province is an important ecological security barrier in Northeast China as it is located at the junction of the Northeast forest belts and the northern sand prevention belts. In recent years, Jilin Province has actively carried out ecological protection and restoration projects, resulting in a continuous improvement trend for the overall ecological environment. However, the evolution patterns and mechanisms of habitat quality are largely unkown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!