Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Agriculture-based climate change mitigation may occur through enhancing the carbon sink or through reducing greenhouse gases (GHGs) emissions from agricultural residue treatment, as open burning of agricultural residues produces millions of tons of GHGs and air pollutants annually worldwide. Charring slashed biomass, termed as slash-and-char, has been considered as a promising alternative to open burning in dealing with agricultural residues such as rice straw. Previous studies, however, focused on relatively sophisticated slash-and-char systems, which could not be practiced easily by smallholder farmers in developing countries. Here we introduce a simple slash-and-char system to mitigate the environmental problems associated with open burning of rice straw. This system could convert 30.7% of the initial carbon in rice straw into biochar, much higher than that retained in the ash generated by open burning (3.95%). It could also cut GHGs, particulate matters and polycyclic aromatic hydrocarbons (PAHs) emissions by 26.9%, 99.0% and 99.4%, respectively. If open burning of rice straw was replaced by the slash-and-char, the annual emissions of GHGs, particulate matters and PAHs in China would decrease by at least 15.4 Tg, 1.51 Tg and 1.27 Gg, correspondingly. This decrease is nearly twice the size of China's estimated forest C sink (8.81 Tg).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.07.074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!